精英家教网 > 高中数学 > 题目详情
在△ABC中,给出下列四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形;
②若sinA=cosB,则△ABC是直角三角形;
③若cosA•cosB•cosC<0,则△ABC是钝角三角形;
④若cos(A-B)•cos(B-C)•cos(C-A)=1,则△ABC是等边三角形.
以上命题正确的是
 
(填命题序号).
分析:①若sin2A=sin2B,则 2A=2B,或 2A+2B=π,即A=B 或C=
π
2
,可知①不正确.
②若sinA=cosB,找出∠A和∠B的反例,即可判断则△ABC是直角三角形错误,故②不正确.
③若cosA•cosB•cosC<0,cosA、cosB、cosC两个是正实数,一个是负数,故A、B、C中两个是锐角,一个是钝角,
故③正确.
④若cos(A-B)•cos(B-C)•cos(C-A)=1 可得 A=B=C,故△ABC是等边三角形,故④正确.
解答:解:①若sin2A=sin2B,则 2A=2B,或 2A+2B=π,即A=B 或C=
π
2
,故△ABC为等腰三角形 或直角三角形,故①不正确.
②若sinA=cosB,例如∠A=100°和∠B=10°,满足sinA=cosB,则△ABC不是直角三角形,故②不正确.
③若cosA•cosB•cosC<0,则由三角形各个内角的范围及内角和等于180° 知,cosA、cosB、cosC两个是正实数,
一个是负数,故A、B、C中两个是锐角,一个是钝角,故③正确.
④若cos(A-B)•cos(B-C)•cos(C-A)=1,则由三角形各个内角的范围及内角和等于180° 知,
cos(A-B)=cos(B-C)=cos(C-A)=1,故有 A=B=C,故△ABC是等边三角形,故④正确.
故答案为 ③④.
点评:本题考查判断三角形的形状的方法,注意角的范围及内角和等于180°,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为
 
(用代号C1、C2、C3填入).
条  件 方  程
①△ABC的周长为10 C1:y2=25
②△ABC的面积为10 C2:x2+y2=4(y≠0)
③△ABC中,∠A=90° C3
x2
9
+
y2
5
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A(x,y),B(-2,0),C(2,0),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件 方程
①△ABC周长为10;
②△ABC面积为10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
则满足条件①、②、③的轨迹方程分别用代号表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件 方程
①△ABC周长为10 C1y2=25
②△ABC面积为10 C2x2+y2=4(y≠0)
③△ABC中,∠A=90° C3
x2
9
+
y2
5
=1(y≠0)
则满足条件①、②、③的点A轨迹方程按顺序分别是(  )
A、C3、C1、C2
B、C2、C1、C3
C、C1、C3、C2
D、C3、C2、C1

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州市玉环县玉城中学高二(上)第二次月考数学试卷(解析版) 题型:选择题

在△ABC中,A(x,y),B(-2,0),C(2,0),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件方程
①△ABC周长为10;
②△ABC面积为10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
则满足条件①、②、③的轨迹方程分别用代号表示为( )
A.E3,E1,E2
B.E1,E2,E3
C.E3,E2,E1
D.E1,E3,E2

查看答案和解析>>

科目:高中数学 来源:2010年四川省眉山市高考数学二模试卷(文科)(解析版) 题型:解答题

在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
则满足条件①、②、③的轨迹方程分别为    (用代号C1、C2、C3填入).
条  件方  程
①△ABC的周长为10C1:y2=25
②△ABC的面积为10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3

查看答案和解析>>

同步练习册答案