精英家教网 > 高中数学 > 题目详情

【题目】已知函数,( .

(1)若 ,求函数的单调减区间;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)当 时,记函数的导函数的两个零点是),求证: .

【答案】(1) (2) ;(3)见解析.

【解析】试题分析:(1)代入 时,得到,求得,即可求解函数的单调区间;

(2)把不等式上恒成立,转化为在区间上恒成立,令,利用导数求得函数的最小值,即可求解实数的取值范围.

(3)方法一:求得,得 是方程的两个根,即

化简,令,利用导数求得的最小值,即可证明结论;

试题解析:

(1)由题意: 时,

所以

,得,因为,所以

所以的单调减区间为.

2时,

不等式上恒成立即为: 在区间上恒成立

,则,令得:

因为时, 时,

所以上单调递减,在上单调递增

所以,所以.

(3)方法一:因为,所以,从而

由题意知, 是方程的两个根,故.

,则,因为,所以

,所以 ,且 .

因为,所以 .

.

因为,所以单调递增,

所以,即.

方法二:因为,所以,从而.

由题意知, 是方程的两个根.记,则

因为,所以

所以 ,且上为减函数.

所以.

因为,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点F1 , F2在轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)若P是椭圆C上第一象限内的点,△PF1F2的内切圆的圆心为I,半径为 .求:
(i)点P的坐标;
(ii)直线PI的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形中, .把沿折起,使得,得到四棱锥.如图2所示.

(1)求证:面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定记号“*”表示一种运算,a*b=a2+ab,设函数f(x)=x*2,且关于x的方程f(x)=ln|x+1|(x≠﹣1)恰有4个互不相等的实数根x1 , x2 , x3 , x4 , 则x1+x2+x3+x4=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,满足“对任意的x1x2∈(0,+∞),使得<0”成立的是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=是奇函数,gx)=log2(2x+1)-bx是偶函数.

(1)求a-b;

(2)若对任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

1)当时, 上恒成立,求实数的取值范围;

2)当时,若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像上存在关于轴对称的点,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0而是它的一个均值点. 例如y=|x|是[﹣2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=sinx﹣1是[﹣π,π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0
③若函数f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函数”,则实数m∈(﹣2,0);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0
其中的真命题有(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案