精英家教网 > 高中数学 > 题目详情
若命题“?x∈R,使得x2+4x+m<0”是假命题,则实数m的取值范围是
 
考点:特称命题
专题:函数的性质及应用,不等式的解法及应用
分析:本题先利用原命题是假命题,则命题的否定是真命题,得到一个恒成立问题,再利用函数图象的特征得到一元二次方程根的判别式小于或等于0,解不等式,得到本题结论.
解答: 解:∵命题“?x∈R,使得x2+4x+m<0”,
∴命题“?x∈R,使得x2+4x+m<0”的否定是“?x∈R,使得x2+4x+m≥0”.
∵命题“?x∈R,使得x2+4x+m<0”是假命题,
∴命题“?x∈R,使得x2+4x+m≥0”是真命题.
∴方程x2+4x+m=0根的判别式:△=42-4m≤0.
∴m≥4.
故答案为:[4,+∞).
点评:本题考查了命题的否定、二次函数的图象,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b的图象关于直线x=1对称,且方程f(x)+2x=0有两个相等的实根.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是(  )
A、f(4)>f(-π)>f(3)
B、f(π)>f(4)>f(3)
C、f(4)>f(3)>f(π)
D、f(-3)>f(-π)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-a
x2+2
,其中a∈[-1,1],若a=0,t∈[-1,1],求满足f(t)+f(1-t2)>0的实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+(m2+2)+m在(-1,1)上零点的个数为(  )
A、1B、2C、0D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos
π
2
x+
1
x-1
,则f(x)在[-4,6]上所有零点的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记数列{an}的前n项和为Sn,a1=a(a≠0),且2Sn=(n+1)•an
(1)求数列{an}的通项公式an与Sn
(2)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
an-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an+Sn=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=3+log4an,设Tn=|b1|+|b2|+…+|bn|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形的一个性质为:设△SAB的两边SA、SB互相垂直,点S在AC边上的射影为H,则SB2=BH•AB.结论推广到三棱锥,设三棱锥S-ABC的三个侧面SAB、SBC、SAC两两相互垂直,点S在平面ABC上的射影为H,则有:
 

查看答案和解析>>

同步练习册答案