精英家教网 > 高中数学 > 题目详情

【题目】如图,某市郊外景区内一条笔直的公路经过三个景点,景区管委会又开发了风景优美的景点,经测量景点位于景点的北偏东方向处,位于景点的正北方向,还位于景点的北偏西方向上,已知.

1)景区管委会准备由景点向景点修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到

2)求景点与景点之间的距离.(结果精确到

【答案】(1);(2).

【解析】

1)过点DDEAC于点E,过点AAFDB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.

2RtDCE中根据三角函数就可以求出CD的长.

1)如图,过点DDEAC于点E,过点AAFDB,交DB的延长线于点F

RtDAF中,∠ADF30°,∴AFAD84,∴DF

RtABF中,BF3,∴BDDFBF43

sinABF,在RtDBE中,sinDBE

∵∠ABF=∠DBE,∴sinDBE

DEBDsinDBE433.1km

∴景点D向公路a修建的这条公路的长约是3.1km

2)由题意可知∠CDB75°,由(1)可知sinDBE0.8,所以∠DBE53°,∴∠DCB180°75°53°52°

RtDCE中,sinDCE,∴DC4.0km

∴景点C与景点D之间的距离约为4.0km

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 C 经过点 (2,3),它的渐近线方程为 y = ±.椭圆 C1与双曲线 C有相同的焦点,椭圆 C1的短轴长与双曲线 C 的实轴长相等.

1)求双曲线 C 和椭圆 C1 的方程;

2)经过椭圆 C1 左焦点 F 的直线 l 与椭圆 C1 交于 AB 两点,是否存在定点 D ,使得无论 AB 怎样运动,都有∠ADF = BDF ?若存在,求出 D 点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点上.

(1) 求椭圆的方程;

(2) 分别是椭圆的上、下焦点,过的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了户家庭进行问卷调查,经调查发现,这些家庭的月收人在元到元之间,根据统计数据作出:

1)经统计发现,该社区居民的家庭月收人(单位:百元)近似地服从正态分布,其中近似为样本平均数.落在区间的左侧,则可认为该家庭属收入较低家庭" ,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区家庭月收入为元,试判断家庭是否属于收人较低家庭”,并说明原因;

2)将样本的频率视为总体的概率

①从该社区所有家庭中随机抽取户家庭,若这户家庭月收人均低于元的概率不小于,的最大值;

②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调在的家庭制定了贈送购物卡的活动,贈送方式为:家庭月收入低于的获赠两次随机购物卡,家庭月收入不低于的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:

赠送购物卡金额(单位:)

概率

家庭预期获得的购物卡金额为多少元?(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为丰富教职工生活,在元旦期间举办趣味投篮比赛,设置AB两个投篮位置,在A点投中一球得1分,在B点投中一球得2分,规则是:每人按先AB的顺序各投篮一次(计为投篮两次),教师甲在A点和B点投中的概率分别为,且在AB两点投中与否相互独立.

(1)若教师甲投篮两次,求教师甲投篮得分0分的概率

(2)若教师乙与教师甲在AB投中的概率相同,两人按规则投篮两次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:为参数),为直线上距离为的两动点,点为曲线上的动点且不在直线上.

1)求曲线的普通方程及直线的直角坐标方程.

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,其中.

(1)讨论的奇偶性;

(2)时,求证:的最小正周期是

(3),当函数的图像与的图像有交点时,求满足条件的的个数,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

同步练习册答案