精英家教网 > 高中数学 > 题目详情
12.已知动圆Q过定点F(0,-1),且与直线y=1相切;椭圆N的对称轴为坐标轴,中心为坐标原点O,F是其一个焦点,又点(0,2)在椭圆N上.
(1)求动圆圆心Q的轨迹M的方程和椭圆N的方程;
(2)过点(0,-4)作直线l交轨迹M于A,B两点,连结OA,OB,射线OA,OB交椭圆N于C,D两点,求△OCD面积的最小值.
(3)附加题(本题额外加5分):过椭圆N上一动点P作圆x2+(y-1)2=1的两条切线,切点分别为G,H,求$\overrightarrow{PG}•\overrightarrow{PH}$的取值范围.

分析 (1)由抛物线的定义可得动点Q的轨迹M的标准方程,由题意可得c=1,a=2,求得b,进而得到椭圆方程;
(2)显然直线m的斜率存在,不妨设直线m的直线方程为:y=kx-4,分别代入抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及点到直线的距离公式,求得三角形的面积,再由不等式的性质,即可得到所求最小值.
(3)设∠EPF=2α,求出$\overrightarrow{PG}•\overrightarrow{PH}$表达式,利用$\left|\overrightarrow{PG}\right|$的范围,求解表达式的范围即可.

解答 解:(1)依题意,由抛物线的定义易得动点Q的轨迹M的标准方程为:x2=-4y,
依题意可设椭圆N的标准方程为$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),
显然有c=1,a=2∴b=$\sqrt{3}$,
∴椭圆N的标准方程为:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}=1$;
轨迹$M:{x^2}=-4y,N:\frac{y^2}{4}+\frac{x^2}{3}=1$;
(2)$\left\{\begin{array}{l}y=kx-4\\{x^2}=-4y\end{array}\right.⇒{x^2}-4kx-16=0⇒\left\{\begin{array}{l}{x_1}+{x_2}=4k\\{x_1}{x_2}=-16\\{y_1}{y_2}=16\end{array}\right.$
所以x1x2+y1y2=0⇒OA⊥OB
设$OM:\left\{\begin{array}{l}y=kx\\ 3{y^2}+4{x^2}=12\end{array}\right.⇒(3{k^2}+4){x^2}=12⇒{x_M}^2=\frac{12}{{3{k^2}+4}}$,
所以$|{OM}|=\sqrt{1+{k^2}}|{x_M}|=\sqrt{1+{k^2}}\sqrt{\frac{12}{{3{k^2}+4}}}$,
同理可得:$|{ON}|=\sqrt{1+\frac{1}{k^2}}|{x_N}|=\sqrt{\frac{{1+{k^2}}}{k^2}}\sqrt{\frac{{12{k^2}}}{{3+4{k^2}}}}$,
所以${S_{△OMN}}=\frac{1}{2}|{OM}|•|{ON}|=6\sqrt{\frac{{{{(1+{k^2})}^2}}}{{(3{k^2}+4)(3+4{k^2})}}}$,
令t=1+k2(t≥1),${S_△}=6\sqrt{\frac{t^2}{{12{t^2}+t-1}}}=6\sqrt{\frac{1}{{-{{(\frac{1}{t}-\frac{1}{2})}^2}+\frac{49}{4}}}}$,
所以当$t=2,即:k=±1时,{S_{max}}=\frac{12}{7}$
(3)(附加题)设∠GPH=2α,圆x2+(y-1)2=1的圆心为E,如图:
当P在椭圆上顶点时PE最小为1,在椭圆下顶点时,|PE|的最大值为3,PE∈[1,3],
PEcosα=PG,sinα=$\frac{1}{PE}$.
∴${\;}\overrightarrow{PG}•\overrightarrow{PH}=|PG{|}^{2}cos2α=|PE{|}^{2}co{s}^{2}α•(1-2si{n}^{2}α)=|PE{|}^{2}(1-\frac{1}{{|PE|}^{2}})(1-2\frac{1}{{|PE|}^{2}})$
=$|PE{|}^{2}+\frac{2}{{|PE|}^{2}}-3$$≥2\sqrt{|PE{|}^{2}•\frac{2}{{|PE|}^{2}}}-3$=$2\sqrt{2}-4$,当且仅当|PE|=$\sqrt{2}$时取等号.
因为|PE|∈[1,3],所以$\overrightarrow{PG}•\overrightarrow{PH}∈[2\sqrt{2}-3,\frac{56}{9}]$.

点评 本题考查直线和圆相切的条件,同时考查抛物线的定义和椭圆方程的运用,注意联立直线方程,运用韦达定理和弦长公式,考查化简整理的运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.圆2x2+2y2+6x-4y-3=0的圆心坐标和半径分别为(  )
A.(-$\frac{3}{2}$,1)和$\frac{19}{4}$B.(3,2)和$\frac{\sqrt{19}}{2}$C.(-$\frac{3}{2}$,1)和$\frac{\sqrt{19}}{2}$D.($\frac{3}{2}$,-1)和$\frac{\sqrt{19}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线x2=y上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的
纵坐标的取值范围是(  )
A.(-∞,-2]∪[2,+∞)B.(-∞,0]∪[3,+∞)C.(-∞,1]∪[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:x+my-3=0,圆C:(x-2)2+(y+3)2=9.
(1)若直线l与圆相切,求m的值;
(2)当m=-2时,直线l与圆C交于点E、F,O为原点,求△EOF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{1}{{\sqrt{1-x}}}$的定义域是(  )
A.[1,+∞)B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)是函数g(x)=log2x的反函数,则f(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知A(-3,0),B(3,0),动点C(x,y),若直线AC,BC的斜率kAC,kBC满足条件${k_{AC}}•{k_{BC}}=-\frac{4}{9}$.
(1)求动点C的轨迹方程;
(2)已知${F_1}(-\sqrt{5},0),{F_2}(\sqrt{5},0)$,问:曲线C上是否存在点P满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$?若存在求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向右平移$\frac{π}{6}$个单位后得到函数g(x)=sin(ωx)的图象,则函数f(x)的图象(  )
A.关于直线x=$\frac{π}{12}$对称B.关于直线x=$\frac{5π}{12}$对称
C.关于点($\frac{π}{12}$,0)对称D.关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为保证APEC会议期间空气质量,城市环保局加强了对各个地区空气质量的监督力度.环保局在某工厂附近小区新设置了一台仪器用以随时监测“PM2.5”的值,仪器有三个重要的元件,若元件损坏则会引起仪器故障,已知A,B,C三个元器件损坏的概率分别为:0.1,0.2,0.3,三个元器件是否损坏互不影响,当A,B,C三个元器件中有一个损坏时,仪器发生故障的概率为0.1,有两个损坏时,仪器发生故障的概率为0.5,有三个损坏时,仪器发生故障的概率为0.9.
(Ⅰ)设X表示A,B,C三个元器件正常的个数,求X的分布列和期望;
(Ⅱ)求仪器发生故障的概率.

查看答案和解析>>

同步练习册答案