精英家教网 > 高中数学 > 题目详情

如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.

(1)证明见解析;(2).

解析试题分析:(1)根据直棱柱性质,得平面,从而,结合,证出平面,从而得到
(2)因为,所以直线与平面夹角即直线与平面夹角
建立空间直角坐标系,设为原点,轴正半轴,轴正半轴,设平面的一个法向量,通过计算求出的夹角的余弦值的绝对值就为直线与平面夹角的正弦值.
试题解析:(1) 是直棱柱







(2)
直线与平面夹角即直线与平面夹角
建立空间直角坐标系,设为原点,轴正半轴,轴正半轴,
,,,,,则

,即


设平面的一个法向量




直线与平面夹角的正弦值.
考点:1.线面垂直的判定定理及性质定理;2.向量法求空间角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且

(I)求证:EF∥平面BDC1
(II)求二面角E-BC1-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:四边形是梯形,,,三角形是等边三角形,且平面 平面,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,,点分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.

(Ⅰ)证明:AD⊥C1E;
(Ⅱ)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,D、E分别为、AD的中点,F为上的点,且

(I)证明:EF∥平面ABC;
(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.

(Ⅰ)证明EF//平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,⊥底面,,,.

(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积.

查看答案和解析>>

同步练习册答案