精英家教网 > 高中数学 > 题目详情
10.已知f(x)=$\frac{a•2^x+a-2}{2^x+1}$是定义在[-2,2]上的奇函数.
(1)求实数a的值,并求f(1)的值;
(2)证明:f(x)在定义域上为增函数;
(3)解不等式f(2x-1)<$\frac{1}{3}$.

分析 (1)根据函数奇偶性的性质建立方程关系即可得到结论.
(2)利用函数单调性的定义进行证明即可.
(3)利用函数奇偶性和单调性的关系将不等式进行转化求解.

解答 解:(1)方法一:∵f(x)是奇函数,
∴f(-x)=-f(x),
又f(x)=$\frac{a•({2}^{x}+1)-2}{{2}^{x}+1}$=a-$\frac{2}{{2}^{x}+1}$,
∴a-$\frac{2}{{2}^{-x}+′1}$=-a+$\frac{2}{{2}^{x}+1}$,
∴2a=$\frac{2}{\frac{1}{{2}^{x}}+1}$+$\frac{2}{{2}^{x}+1}$=$\frac{2•{2}^{x}}{{2}^{x}+1}$+$\frac{2}{{2}^{x}+1}$=2,∴a=1.
方法二:∵f(x)是[-2,2]上的奇函数,∴f(0)=a-1=0,∴a=1.
即f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,∴f(1)=$\frac{1}{3}$.
(2)证明如下:由(1)知f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$( x∈[-2,2]).任取-∞<x1<x2<+∞,
∵f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}-1}{{2}^{{x}_{1}}+1}$-$\frac{{2}^{{x}_{2}}-1}{{2}^{{x}_{2}}+1}$=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$.
∵-2≤x1<x2≤2,∴2x1<2x2
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)在定义域上为增函数.
(3)∵f(1)=$\frac{1}{3}$.
∴不等式f(2x-1)<$\frac{1}{3}$.等价为f(2x-1)<f(1),
∵f(x)定义在[-2,2]上的奇函数且单调递增.
∴-2≤2x-1<1,
即$-\frac{1}{2}$≤x<1,
即不等式的解集为[$-\frac{1}{2}$,1).

点评 本题主要考查函数奇偶性和单调性的判断和应用,利用函数奇偶性和单调性的定义和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,满足a1=2,Sn+2=2an,n∈N*
(1)求an
(2)求证:$\frac{a_1}{{({{a_1}+1})({{a_2}+1})}}+\frac{a_2}{{({{a_2}+1})({{a_3}+1})}}+…+\frac{a_n}{{({{a_n}+1})({{a_{n+1}}+1})}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数.
(1)$y=\frac{e^x}{x}$;           
(2)y=(2x2-1)(3x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④S8>S5,其中正确命题序号是(  )
A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥平面ABCD,点E、F在PC、AC上,PE=$\frac{1}{4}$PC.
(I)若EF∥平面PBD,求的$\frac{AF}{AC}$的值;
(II)若PA=AB,三棱锥C-BDE的体积为8,求正方形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司生产甲,乙两种桶装产品.已知生产甲产品1桶需消耗A原料1千克、B原料2千克;生产乙产品1桶需消耗A原料2千克、B原料1千克.每桶甲产品利润300元,每桶乙产品利润400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.那么该公司每天如何生产获得利润最大?最大利润是多少?(作出图象)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量$\overrightarrow{OP}$与$\overrightarrow{O{A_i}}$的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,与圆ρ=2cosθ相切,且与极轴平行的直线的极坐标方程是ρsinθ=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为$\sqrt{3}$,求实数a的值;
(2)若弦AB的长为4,求实数a的值;
(3)求直线l的方程及实数a的取值范围.

查看答案和解析>>

同步练习册答案