精英家教网 > 高中数学 > 题目详情
1.已知直线x-y-1=0与椭圆(n-1)x2+ny2-n(n-1)=0(n>1)交于A、B两点,若以AB为直径的圆过椭圆的左焦点F,求实数的n值.

分析 求出F的坐标,直线方程代入椭圆方程并整理,利用韦达定理,结合以AB为直径的圆过椭圆的焦点F,利用向量的数量积公式,即可求得结论.

解答 解:由题意,椭圆方程为:$\frac{{x}^{2}}{n}$+$\frac{{y}^{2}}{n-1}$=1,
∴c=$\sqrt{n-(n-1)}$=1,∴F(-1,0),
将直线y=x-1代入椭圆 $\frac{{x}^{2}}{n}$+$\frac{{y}^{2}}{n-1}$=1并整理,
得:(2n-1)x2-2nx+2n-n2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{2n}{2n-1}$,x1x2=$\frac{2n-{n}^{2}}{2n-1}$,
∴y1y2=(x1-1)(x2-1)=$\frac{-{n}^{2}+2n-1}{2n-1}$,
∵以AB为直径的圆过椭圆的左焦点F(-1,0),
∴$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,即(x1+1,y1)•(x2+1,y2)=0,
∴$\frac{2n-{n}^{2}}{2n-1}$+$\frac{2n}{2n-1}$+1+$\frac{-{n}^{2}+2n-1}{2n-1}$=0,
∴n2-4n+1=0,
∴n=2±$\sqrt{3}$,
又∵n>1
∴n=2+$\sqrt{3}$.

点评 本题考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查学生分析解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.P(x0,y0)是圆x2+y2=R2内异于圆心的一点,则直线x0x+y0y=R2与圆x2+y2=R2的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=|x+a|在(-∞,-1)上是单调函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2lnx+$\frac{ax}{x+1}$,其中a为实常数.
(1)若f(x)在(0,+∞)上是增函数,求a的取值范围;
(2)若f(x)有两个不同的极值x1,x2,当x>0时,证明:$\frac{f({x}_{1})+f({x}_{2})}{x+1}$≥$\frac{f(x)-2x+2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=ax+b(a>1,b>0)的图象经过点P(1,3),则$\frac{4}{a-1}$+$\frac{1}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2x-$\frac{1}{{x}^{2}}$的极大值是-3,极大值点是x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若A,B为椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的长轴两端点,Q为椭圆上一点,使∠AQB=120°,求此椭圆离心率最小值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$(a>b),过右焦点F且斜率为2$\sqrt{6}$的直线与椭圆及y轴交于B,M点,B分$\overrightarrow{MF}$所成的比为2,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在四较锥E-ABCD中,底面ABCD为矩形,CD⊥平面BEC,G是线段BE上一点,F是线段DC的中点且GF∥平面ADE,AB=BE=EC=2.
(1)求证:GB=GE;
(2)若BE⊥CE,求直线DG与平面AEF所成角的正弦值.

查看答案和解析>>

同步练习册答案