精英家教网 > 高中数学 > 题目详情

设集合A={x|x-a<1,x∈R},B={x|x-b>1,x∈R},若A⊆B,则实数a,b必满足


  1. A.
    |a-b|≥2
  2. B.
    |a+b|≥2
  3. C.
    |a-b|≤2
  4. D.
    |a+b|≤2
A
分析:先利用绝对值不等式的解法化简集合A、B,再结合A⊆B,观察集合区间的端点之间的关系得到不等式,由不等式即可得到结论.
解答:∵A={x|a-1<x<a+1},B={x|x<b-1或x>b+1}
因为A⊆B,所以a+1≤b-1或a-1≥b+1,
即a-b≤-2或a-b≥2,
即|a-b|≥2.
故选A.
点评:本题主要考查绝对值不等式的解法与几何与结合之间的关系,属于中等题.
温馨提示:处理几何之间的子集、交、并运算时一般利用数轴求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设集合A={x||x-2|≤2,x∈R},B={y|y=-x2,-1≤x≤2},则CR(A∩B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1、设集合A={x|y=1gx},B{x|x<1},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x<0},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x+1>0},集合B={x|x2-2<0}则A∪B等于(  )
A、{x|x<-1或x>
2
}
B、{x|-1<x<
2
}
C、{x|x>-
2
}
D、{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},现在我们定义对于任意两个集合M,N的运算:M?N={x|x∈M∪N,且x?M∩N},则A?B=(  )
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

同步练习册答案