精英家教网 > 高中数学 > 题目详情
已知直线l1:mx+8y+n=0,l2:2x+my﹣1=0,分别满足下列情况:
(1)两条直线相较于点P(m,﹣1);
(2)两直线平行;
(3)两直线垂直,且l1在y轴上的截距为﹣1,试分别确定m,n的值.
解:(1)由点P在直线l1,l2上,故
所以m=1,n=7.
(2)因为l1∥l2,且斜率存在,则,∴m=±4.
又当m=4,n=﹣2时,两直线重合,当m=﹣4,n=2,同样
∴当m=4,n≠2或m=﹣4,n≠2时,两直线平行. 
(3)当m=0时直线l1:y=﹣  和l2:x=  
此时,l1⊥l2
又l1在y轴上的截距为﹣1,n=8,
当m≠0时此时两直线的斜率之积等于 
 显然 l1与l2不垂直,
所以当m=0,n=8时,直线 l1 和 l2垂直满足题意.        
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•铁岭模拟)(1)已知直线l1:mx+2y+1=0与直线l2:2x-4m2y-3=0垂直,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆O:x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为
5
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l1:mx+2y+1=0与直线l2:x+2my+m2=0平行,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆x2+y2-2x+2y-2=0所截得的线段长为2
3
,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做)已知直线l1:mx+ny+4=0,l2:(m-1)x+y+n=0,l1经过(-1,-1),问l1∥l2是否成立?若成立,求出m,n的值,若不成立,说明理由.
(理科做)△ABC的顶点B(3,4),AB边上的高CE所在直线方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1=0,求AC的长.

查看答案和解析>>

同步练习册答案