精英家教网 > 高中数学 > 题目详情
12.若f(x)=5-3x(2<x≤4),则f(x)的值域为(  )
A.RB.[-7,-1)C.(-7,-1]D.{-7,-1}

分析 直接利用一次函数的单调性求得函数值域.

解答 解:∵f(x)=5-3x在(2,4]上为减函数,
∴f(x)的值域为[-7,-1).
故选:B.

点评 本题考查函数值域的求法,训练了利用一次函数的单调性求函数的值域,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数g(x)是定义在R上的可导函数,其导函数为g′(x),且3g(x)+xg′(x)>0恒成立,则不等式(x-2015)3g(x-2015)+8g(-2)>0的解集为(  )
A.(-∞,-2013)B.(-2013,0)C.(2013,+∞)D.(0,2013)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)、g(x)在区间[-2,2]上是奇函数,则函数f(x)•g(x)在这个区间上是偶函数.(填写奇偶性)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的定义域.
(1)y=${x}^{-\frac{1}{3}}$
(2)y=${x}^{\frac{3}{4}}$
(3)y=(x2-3x)-3+1    
(4)y=${{(x}^{2}-3x+2)}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知约束条件$\left\{\begin{array}{l}{x-3y+4≥0}\\{x+2y-1≥0}\\{3x+y-8≤0}\end{array}\right.$,且目标函数z=a2x+(a-2-a2)y取得最小值的最优解唯一,为(2,2),则a的取值范围是($\frac{-1-\sqrt{17}}{4},\frac{-1+\sqrt{17}}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}中,an>0,若S12,S22,…,Sn2,…是一个以1为首项,2为公差的等差数列,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在R上的奇函数,且x≥0时,f(x)=2x-1.
(1)求f(0),f(-1)的值;
(2)求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数f(x)与函数g(x)=loga(|x|+2)在(0,+∞)上至少有三个交点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{1}{2}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,已知a1=25,S9=S17,问数列前多少项和最大,并求出最大值.

查看答案和解析>>

同步练习册答案