精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|$\frac{1}{x}$-1|.
(1)求函数y=f(x)-3的零点;
(2)利用定义法判断函数f(x)在(0,1]上的单调性,并求出函数f(x)的单调区间;
(3)若存在实数a、b(a<b且a≠0),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],求非零实数m的取值范围.

分析 (1)画出函数图象,利用函数图象的交点问题判断即可.
(2)根据单调性的定义证明,运用图象写出单调区间,结合导数判断即可.

解答 解:(1)∵函数f(x)=|$\frac{1}{x}$-1|.
∴画出函数图象;

根据图象判断有2个交点,
故函数y=f(x)-3有2个零点;
(2)设任意两个实数x1,x2∈(0,1],且x1<x2
$\frac{1}{{x}_{1}}$$>\frac{1}{{x}_{2}}$≥1,
∴$\frac{1}{{x}_{1}}$-1$>\frac{1}{{x}_{2}}$-1≥0,
∵函数f(x)=|$\frac{1}{x}$-1|.
∴f(x1)>f(x2
∴(-∞,0),(1,+∞)单调递增;(0,1)单调递减
(3)根据题意与函数关系式得出;
f(x)与y=mx有2个交点,
根据图象可得出:y=1-$\frac{1}{x}$,x>1,与y=mx有2个交点,
y′=$\frac{1}{{x}^{2}}$,∴$\frac{1}{{x}_{0}^{2}}$=m,x0=$\frac{1}{\sqrt{m}}$,切点为($\frac{1}{\sqrt{m}}$,$\sqrt{m}$)在y=1-$\frac{1}{x}$,x>1的图象上,
∴$\sqrt{m}$=$1-\sqrt{m}$,m=$\frac{1}{4}$,
∴m的范围为:(0,$\frac{1}{4}$)

点评 本题综合考察了函数性质,定义,运用数形结合的思想解决零点问题,属于难度较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.计算:
(1)log427×log58×log325
(2)(${a^{\frac{2}{3}}}{b^{\frac{1}{2}}}$)•(-3${a^{\frac{1}{2}}}{b^{\frac{1}{3}}}$)÷($\frac{1}{3}{a^{\frac{1}{6}}}{b^{\frac{5}{6}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,D、E分别是△ABC的边AC、BC上的点,平面α经过D、E两点.
(1)求作直线AB与平面α的交点P;
(2)求证:D、E、P三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,设定点A(a,-a),P是函数y=$\frac{1}{x}$(x≥1)图象上一动点,若点P,A之间的最短距离为$\sqrt{10}$,则满足条件的实数a的所有值为-2或2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y,z∈R,若$\frac{y}{x}•\frac{z}{x}$>1,且$\frac{y}{x}+\frac{z}{x}>0$,则下列结论成立的是(  )
A.x,y,z同号B.y,z同号,且x与它们异号
C.y,z同号,x不能确定D.x,y,z的符号均不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的定义域、值域、单调区间3
(1)f(x)=$\frac{1}{{2}^{x-4}}$;
(2)f(x)=($\frac{1}{2}$)${\;}^{\sqrt{-{x}^{2}-3x+4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sin(3π+α)=$\frac{1}{3}$,求:$\frac{sin(180°+α)cos(720°+α)tan(540°+α)•sin(-180°+α)}{tan(900°+α)•sin(-180°-α)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l经过点A(0,4),且与直线2x-y-3=0垂直,那么直线l的方程是(  )
A.x+2y-8=0B.x+2y+8=0C.2x-y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=|x2-2x|(x∈R).
(1)先完成下列表格,再画出函数f(x)在区间[-2,3]上的图象;
(2)根据图象写出该函数在[-2,3]上的单调区间;
(3)根据图象写出该函数在区间[-2,3]上的值域.
x-20123
y

查看答案和解析>>

同步练习册答案