精英家教网 > 高中数学 > 题目详情
9.已知p:x<8,q:x<a,且q是p的充分而不必要条件,则a的取值范围为a<8.

分析 根据充分必要条件的定义以及集合的包含关系判断即可.

解答 解:∵p:x<8,q:x<a,且q是p的充分而不必要条件,
∴a<8,
故答案为:(-∞,8).

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数f(x)的定义域为D,若x1,x2∈D且当f(x1)=f(x2)时总有x1=x2,则称f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数,给出下列命题:
①反比例函数$f(x)=\frac{1}{x}$(x∈R,x≠0)是单值函数;
②二次函数f(x)=x2(x∈R)是单值函数;
③在定义域D上单调递增或递减的函数一定是单值函数.
以上命题中的真命题有①③(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.高三(3)班班主任根据本班50名学生体能测试成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(1)求频率分布图中a的值;
(2)求该班50名学生中,成绩不低于80分的概率;
(3)从成绩在[40,60)的学生中,随机抽取2人,求此2人分数都在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一点到两焦点间的距离之和为2$\sqrt{2}$,直线4x-3y+3=0被以椭圆C的短轴为直径的圆M截得的弦长为$\frac{8}{5}$.
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点A,B,关于直线l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)对称.
(i)求k的取值范围;
(ii)求证:△AOB面积的最大值等于椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2-2x-2y+1=0上的点到直线3x+4y=32的距离最大值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点M到点F(3,0)的距离比点M到直线x+4=0的距离小1.
(1)求点M的轨迹C的方程;
(2)若曲线C上存在两点A,B关于直线l:x-4y-12=0对称,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.方程x2+y2-4x=0表示的圆的圆心和半径分别为(  )
A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
(Ⅰ)以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(Ⅱ)直线l的方程为$ρsin(θ+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}各项均为正数,Sn为该数列的前项和,${a_1}=1,2{S_n}={a_n}•{a_{n+1}}({N∈{n^*}})$,满足不等式${log_2}({1+\frac{1}{a_1}})+{log_2}({1+\frac{1}{a_2}})+{log_2}({1+\frac{1}{a_n}})>5$的正整数n的最小值为32.

查看答案和解析>>

同步练习册答案