精英家教网 > 高中数学 > 题目详情
18.若等比数列{an}满足a2a4=a5,a4=8,则公比q=2,前n项和Sn=2n-1.

分析 利用等比数列通项公式列出方程组,求出首项和公比,由此能求出首项和前n项和.

解答 解:∵等比数列{an}满足a2a4=a5,a4=8,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{3}={a}_{1}{q}^{4}}\\{{a}_{1}{q}^{3}=8}\end{array}\right.$,
解得a1=1,q=2,
∴前n项和Sn=$\frac{1×(1-{2}^{n})}{1-2}$=2n-1.
故答案为:2,2n-1.

点评 本题考查等比数列的首项和前n项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如表:
温度x(℃)3233353738
西瓜个数y2022243034
(1)求这五天内所卖西瓜个数的平均值和方差;
(2)求变量x.y之间的线性回归方程,并预测当温度为30℃时所卖西瓜的个数.
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=(a+i)(-3+ai)(a∈R),若z<0,则a的值是(  )
A.a=$\sqrt{3}$B.a=-$\sqrt{3}$C.a=-1D.a=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=$\sqrt{3}$sin($\frac{π}{4}$x)的图象向左平移3个单位,得函数y=$\sqrt{3}$sin($\frac{π}{4}$x+φ)(|φ|<π)的图象(如图),点M,N分别是函数f(x)图象上y轴两侧相邻的最高点和最低点,设∠MON=θ,则tan(φ-θ)的值为(  )
A.1-$\sqrt{3}$B.2-$\sqrt{3}$C.1+$\sqrt{3}$D.-2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x(x+1)≤0},集合B={x|x>0},则A∪B=(  )
A.{x|x≥-1}B.{x|x>-1}C.{x|x≥0}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数u,v,x,y满足u2+v2=1,$\left\{\begin{array}{l}x+y-1≥0\\ x-2y+2≥0\\ x≤2\end{array}\right.$,则z=ux+vy的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在数列{an}中,a1=1,若${a_{n+1}}=2{a_n}+2(n∈{N^*})$,则an=3•2n-1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆${C_{\;}}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,一个短轴端点到焦点的距离为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l:x+4y-2=0,过点A(2,2)作直线m交椭圆C于不同的两点E,F交直线l于点K,问:是否存在常数t,使得$\frac{1}{|AE|}+\frac{1}{|AF|}=\frac{t}{|AK|}$恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.
(Ⅰ)求抽取的5人中男、女员工的人数分别是多少;
(Ⅱ)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.设选出的3人中男员工人数为X,求随机变量X的分布列和数学期望;
(Ⅲ)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案