精英家教网 > 高中数学 > 题目详情

选修4-5:不等式选讲已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在R上恒成立.
(Ⅰ)求t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a,bc满足a2+b2+c2=T,求a+2b+c的最大值.

解:(Ⅰ)∵f(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴f(x)min=3.…(2分)∵不等式t≤f(x)在R上恒成立,∴t≤f(x)min=3,t的取值范围为(-∞,3].…(3分)
(Ⅱ)由(Ⅰ)得T=tmax=3,
由柯西不等式得:(a+2b+c)2≤(12+22+12)(a2+b2+c2)=18,∴.…(5分)
当且仅当时,a+2b+c的最大值为.…(7分)
分析:(Ⅰ)利用绝对值三角不等式求出f(x)的最小值,再结合不等式t≤f(x)在R上恒成立即可求得t的取值范围;
(Ⅱ)由(Ⅰ)得T=tmax=3,由柯西不等式得:(a+2b+c)2≤(12+22+12)(a2+b2+c2)=18即可得到a+2b+c的最大值.
点评:本题主要考查利用绝对值不等式的基本性质求解和证明不等式等基础知识,考查运算求解能力,考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案