分析 (1)由EA⊥EB1,AB⊥EB1,AB∩AE=A,AB,AE?平面ABE,从而B1E⊥平面ABE且BE?平面ABE,故BE⊥B1E.利用余弦定理及其勾股定理即可得出.
(2)取BC中点D,则DE∥BC1,连接AD,所以∠AED或其补角为异面直线AE和BC1所成角所成的角.
利用余弦定理即可得出.
解答 解:(1)由EA⊥EB1,AB⊥EB1,AB∩AE=A,AB,AE?平面ABE,
从而B1E⊥平面ABE且BE?平面ABE,故BE⊥B1E.
不妨设 CE=x,则C1E=2-x,
∵∠BCC1=60°,∴BE2=1+x2-x,
∵∠BCC1=60°,∴∠B1C1C=120°,∴${B_1}{E^2}={x^2}-5x+7$.
在Rt△BEB1中有1+x2-x+x2-5x+7=4,
从而x=1或x=2(当x=2时E与C1重合不满足题意).
故E为CC1的中点时,EA⊥EB1.
(2)取BC中点D,则DE∥BC1,连接AD,
所以∠AED或其补角为异面直线AE和BC1所成角所成的角.
∵$AE=\sqrt{3},DE=\frac{{\sqrt{3}}}{2},AD=\frac{3}{2}$,
∴cos∠AED=$\frac{(\frac{\sqrt{3}}{2})^{2}+(\sqrt{3})^{2}-(\frac{3}{2})^{2}}{2×\frac{\sqrt{3}}{2}×\sqrt{3}}$=$\frac{1}{2}$,
∴∠AED=60°.
点评 本题考查了空间位置关系、空间角、余弦定理与勾股定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (0,2) | B. | (-2,0) | C. | (-2,0)∪(2,+∞) | D. | (-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com