精英家教网 > 高中数学 > 题目详情
已知x,y满足
y≥x
x+y≤2
x≥a
,且目标函数z=2x+y的最小值为1,则实数a的值是(  )
A、1
B、
1
3
C、
1
4
D、
1
8
考点:简单线性规划
专题:不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数求得a的值.
解答: 解:由约束条件
y≥x
x+y≤2
x≥a
作出可行域如图,

由图可知A(a,a),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=
1
3

故选:B.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲乙两名同学参加某项技能比赛,7名裁判给两人打出的分数如下茎叶图所示,依此判断(  )
A、甲成绩稳定且平均成绩较高
B、乙成绩稳定且平均成绩较高
C、甲成绩稳定,乙平均成绩较高
D、乙成绩稳定,甲平均成绩较高

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如题所示,则此几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

若tanα=2,则
sinα+cosα
sinα-cosα
等于(  )
A、-3
B、-
1
3
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={(x,y)|
x≥1
y≥1
2x+y≤10
},B={(x-y)|3x-y-11=0},则A∩B的元素个数为(  )个.
A、0B、1C、2D、无数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且对任意的实数x1≠x2(x1>0,x2>0)时,有
f(x1)-f(x2)
x1-x2
>0成立,如果实数t满足f(lnt)-f(1)≤f(1)-f(ln
1
t
),那么t的取值范围是(  )
A、(0,e]
B、[0,
1
e
]
C、[1,e]
D、[
1
e
,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是(  )
A、
3
3
B、
3
2
C、
3
+
7
D、
3
+
7
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域内的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上均有零点,则称x0为函数f(x)的一个“给力点”.现给出下列四个函数:
①f(x)=3x-1+
1
2

②f(x)=2+lg|x-1|;
③f(x)=
x3
3
-x-1;
④f(x)=x2+ax-1(a∈R),则存在“给力点”的函数是(  )
A、①②B、②③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={2,m},N={1,2,3},则“m=3”是“M⊆N”的(  )
A、充分而不必条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案