精英家教网 > 高中数学 > 题目详情
已知以椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F为圆心,a为半径的圆与直线l:x=
a2
c
(其中c=
a2-b2
)交于不同的两点,则该椭圆的离心率的取值范围是(  )
A、(
5
-1
2
,1)
B、(
3
-1
2
,1)
C、(0,
3
-1
2
)
D、(0,
5
-1
2
)
分析:根据a为半径的圆与椭圆的右准线交于不同的两点可知a大于焦准距即
a2
-c
<a,不等式两边同时除以a,可得
1
e
-e<1进而可得e的范围.又根据e<1,综合得e的范围.
解答:解:∵a为半径的圆与椭圆的右准线交于不同的两点
a2
-c
<a,
a
c
-
c
a
<1
,即
1
e
-e<1
解得e>
5
-1
2

又因e<1,
5
-1
2
<e<1
故选A
点评:本题主要考查椭圆的性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.
精英家教网
(1)若最大拱高h为6m,则隧道设计的拱宽l是多少?
(2)若要使隧道上方半椭圆部分的土方工程量最小,则应如何设计拱高h和拱宽l?
(已知:椭圆
x2
a2
+
y2
b2
=1的面积公式为S=πab,柱体体积为底面积乘以高.)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的
2
倍,试确定M、N的位置以及h的值,使总造价最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆
x2
a2
+
y2
b2
=1
(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为
π
6
,原点到该直线的距离为
3
2

(1)求椭圆的方程;
(2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若
ED
=2
DF
,求直线EF的方程;
(3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区一模)已知:椭圆C1
x2
4
+
y2
b2
=1(0<b<2)
和双曲线C2
x2
a2
-
y2
4
=1
.过椭圆C1的右焦点F2作与椭圆长轴垂直的直线与椭圆相交于P,Q两点,|PQ|=3.
(1)求椭圆C1的方程;
(2)若以椭圆右顶点A为圆心,|AF2|为半径的圆与双曲线C2的渐近线相切,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:衢州模拟 题型:单选题

已知以椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F为圆心,a为半径的圆与直线l:x=
a2
c
(其中c=
a2-b2
)交于不同的两点,则该椭圆的离心率的取值范围是(  )
A.(
5
-1
2
,1)
B.(
3
-1
2
,1)
C.(0,
3
-1
2
)
D.(0,
5
-1
2
)

查看答案和解析>>

同步练习册答案