精英家教网 > 高中数学 > 题目详情

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

【答案】(1) (2)

【解析】

1)由菱形的面积公式可得2ab2,由勾股定理可得a2+b23,解方程即可得到所求椭圆方程;(2)设Ax1y1),Bx2y2),Nx3y3),由向量的坐标表示和点满足椭圆方程,结合直线的斜率公式,化简变形,即可得到所求值.

(1)由题可知

解得.

所以椭圆的方程为.

(2)设

,∴

.

又∵,∴

.

∵点在椭圆上,∴

.

,在椭圆上,∴,① .②

又直线斜率之积为,∴,即,③

将①②③代入,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三家企业产品的成本分别为100001200015000,其成本构成如下图所示,则关于这三家企业下列说法错误的是(

A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业

C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的序号是(    )

①函数fx)在定义域R内可导,f1)=0”函数fx)在x1处取极值的充分不必要条件;

②函数fx)=x3ax[12]上单调递增,则a4

③在一次射箭比赛中,甲、乙两名射箭手各射箭一次.设命题p甲射中十环,命题q乙射中十环,则命题至少有一名射箭手没有射中十环可表示为(¬p)∨(¬q);

④若椭圆左、右焦点分别为F1F2,垂直于x轴的直线交椭圆于AB两点,当直线过右焦点时,ABF1的周长取最大值

A.①③④B.②③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.

(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:

依据表格给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).

(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式,参考数据.

(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.

方案一:每满600元可减100元;

方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v

两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;

②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 部分图象如图所示.

(1)求的最小正周期及解析式;

(2)设,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 解关于x的不等式

(2) 若函数的图像恒在函数图像的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海市旅游节刚落下帷幕,在旅游节期间,甲、乙、丙三位市民顾客分别获得一些景区门票的折扣消费券,数量如表1,已知这些景区原价和折扣价如表2(单位:元).

1

数量

景区1

景区2

景区3

0

2

2

3

0

1

4

1

0

2

门票

景区1

景区2

景区3

原价

60

90

120

折扣后价

40

60

80

1)按照上述表格的行列次序分别写出这三位市民获得的折扣消费券数量矩阵A和三个景区的门票折扣后价格矩阵B

2)利用你所学的矩阵知识,计算三位市民各获得多少元折扣?

查看答案和解析>>

同步练习册答案