精英家教网 > 高中数学 > 题目详情
18.三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=AB=AC=1,E、F分别是CC1、BC的中点,AE⊥A1B1
(1)证明:AB⊥AC
(2)在棱A1B1上是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$?若存在,说明点D的位置,若不存在,说明理由.

分析 (1)推导出AB⊥AE,ABy⊥AC,从而AB⊥面A1ACC1,由此能证明AB⊥AC.
(2)以A为原点,AB,AC,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出棱A1B1上存在中点D,使得平面DEF与平面ABC所成锐二面角的余弦值.

解答 证明:(1)∵AE⊥A1B1,A1B1∥AB,∴AB⊥AE,
又∵AE∩AA1=A,∴AB⊥面A1ACC1
又∵AC?面A1ACC1,∴AB⊥AC.
解:(2)以A为原点,AB,AC,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,
则A(0,0,0),E(0,1,$\frac{1}{2}$),F($\frac{1}{2},\frac{1}{2}$,0),A1(0,0,1),B1(1,0,1),
假设棱A1B1上存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$,
设D(λ,0,1),设平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{FE}$=(-$\frac{1}{2},\frac{1}{2},\frac{1}{2}$),$\overrightarrow{DF}$=($\frac{1}{2}-λ$,$\frac{1}{2},-1$),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FE}=-\frac{1}{2}x+\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=(\frac{1}{2}-λ)x+\frac{1}{2}y-z=0}\end{array}\right.$,取x=3,得$\overrightarrow{n}$=(3,1+2λ,2-2λ),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$,
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{|2-2λ|}{\sqrt{9+(1+2λ)^{2}+4(1-λ)^{2}}}$=$\frac{\sqrt{14}}{14}$,
解得$λ=\frac{1}{2}$或$λ=\frac{7}{4}$(舍).
∴棱A1B1上存在中点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$.

点评 本题考查线线垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设直线l经过椭圆$\frac{x^2}{4}+{y^2}=1$的右焦点且倾斜角为45°,若直线l与椭圆相交于A,B两点,则|AB|=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$,左焦点为F.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:$x+\sqrt{2}y-1=0$交椭圆于A,B两点,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,2QA=2AB=PD
(Ⅰ)证明:PQ⊥QC
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大时,其高的值为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,0,1},B={y|y=|x|},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)是定义在(0,+∞)上的单调函数,?x∈(0,+∞),f[f(x)-lnx]=e+1,函数h(x)=xf(x)-ex的最小值为(  )
A.-1B.$-\frac{1}{e}$C.0D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.近年来我国电子商务行业发展迅速,相关管理部门推出了针对电商的商品质量和服务评价的评价体系,现从评价系统中选出某商家的200次成功交易,发现对商品质量的好评率为0.6,对服务评价的好评率为0.75,其中对商品质量和服务评价都做出好评的交易80次.
(1)是否可以在犯错误概率不超过0.5%的前提下,认为商品质量与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品质量和服务评价全好评的次数为随机变量X,求X的分布列(可用组合数公式表示)和数学期望.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].

查看答案和解析>>

同步练习册答案