分析 (1)推导出AB⊥AE,ABy⊥AC,从而AB⊥面A1ACC1,由此能证明AB⊥AC.
(2)以A为原点,AB,AC,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出棱A1B1上存在中点D,使得平面DEF与平面ABC所成锐二面角的余弦值.
解答 证明:(1)∵AE⊥A1B1,A1B1∥AB,∴AB⊥AE,
又∵AE∩AA1=A,∴AB⊥面A1ACC1,
又∵AC?面A1ACC1,∴AB⊥AC.
解:(2)以A为原点,AB,AC,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,
则A(0,0,0),E(0,1,$\frac{1}{2}$),F($\frac{1}{2},\frac{1}{2}$,0),A1(0,0,1),B1(1,0,1),
假设棱A1B1上存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$,
设D(λ,0,1),设平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{FE}$=(-$\frac{1}{2},\frac{1}{2},\frac{1}{2}$),$\overrightarrow{DF}$=($\frac{1}{2}-λ$,$\frac{1}{2},-1$),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FE}=-\frac{1}{2}x+\frac{1}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=(\frac{1}{2}-λ)x+\frac{1}{2}y-z=0}\end{array}\right.$,取x=3,得$\overrightarrow{n}$=(3,1+2λ,2-2λ),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$,
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{|2-2λ|}{\sqrt{9+(1+2λ)^{2}+4(1-λ)^{2}}}$=$\frac{\sqrt{14}}{14}$,
解得$λ=\frac{1}{2}$或$λ=\frac{7}{4}$(舍).
∴棱A1B1上存在中点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{\sqrt{14}}{14}$.
点评 本题考查线线垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | $-\frac{1}{e}$ | C. | 0 | D. | e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com