分析 (1)利用对立事件的概率关系求解;
(2)两个班“在一星期的任一天同时上综合实践课”的概率为$\frac{1}{3}$,一周中5天是5次独立重复试验,服从二项分布.
解答 解:(1)这两个班“在星期一不同时上综合实践课”的概率为$P=1-\frac{3}{3×3}=\frac{2}{3}$.…(4分)
(2)由题意得$X\~B(5,\frac{1}{3})$,$P(X=k)=C_5^k{({\frac{1}{3}})^k}{({\frac{2}{3}})^{5-k}},k=0,1,2,3,4,5$.…(6分)
所以X的概率分布表为:
X | 0 | 1 | 2 | 3 | 4 | 5 |
P | $\frac{32}{243}$ | $\frac{80}{243}$ | $\frac{80}{243}$ | $\frac{40}{243}$ | $\frac{10}{243}$ | $\frac{1}{243}$ |
点评 本题考查了古典概型的概率,独立重复试验的分布列、期望,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-3,3] | B. | $[-\frac{3}{2},3]$ | C. | $[-3,\frac{{3\sqrt{3}}}{2}]$ | D. | $[-3,\frac{3}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
短期培训 | 长期培训 | 合计 | |
能力优秀 | 8 | 54 | 62 |
能力不优秀 | 17 | 21 | 38 |
合计 | 25 | 75 | 100 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ |
f(x) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com