精英家教网 > 高中数学 > 题目详情
给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 
分析:①原曲线即为线x2-(y-1)2=1,按向量平移即是把函数向右平移1个单位,向下平移2个单位后得到曲线.
②不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离;
③充分利用平面几何图形的条件特点,结合椭圆的定义,得到|F1Q|为定长,从而确定动点Q的轨迹是个什么图形.
④以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系,先设P(x,y),欲动点P的轨迹C的方程,即寻找x,y之间的关系,结合向量的坐标运算即可得到.
⑤由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.
解答:解:①原曲线即为x2-(y-1)2=1,则平移后的曲线C为(x-1)2-(y+1)2=1;①不正确.
②若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离.当|k|大于A、B为两个定点间的距离时动点P的轨迹不是双曲线.错;
③∵|PF1|+|PF2|=2a,|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a,
即|F1Q|=2a,
∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.故答案:圆.正确;
④以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系,
设A(-a,0),B(a,0),P(x,y),
AB
=(2a,0),
AP
=(x+a,y),
PB
=(a-x,-y),代入
|
PB
||
AB
|+
PA
AB
=0
2a
(a-x)2+y2
-2a(x+a)
=0;
整理得y2=4ax,
故点P的轨迹是抛物线(除去与直线AB的交点),
故错.
⑤正四面体V-ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,
可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V-BC-A的平面角令其为θ
则Rt△PGH中,|PD|:|PH|=sinθ(θ为S-BC-A的二面角).
又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|
∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,
面VBC不垂直面ABC,所以θ是锐角,故常数sinθ<1
故由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故正确.
故答案为:③⑤
点评:本题主要考查了曲线的平移,向量共线的坐标表示,直线与椭圆的相交关系的综合应用,试题的思路比较清晰,但需要考生具备一定的运算能力及逻辑推理能力.本题中求轨迹方程的方法及定义法.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下五个命题:其中正确命题的序号是
①②③⑤
①②③⑤

①命题“对任意x∈Rx2+x+1>0”的否定是“存在x∈Rx2+x+1≤0”
②函数f(x)=(
1
2
)x-x
1
3
在区间(0、1)上存在零点
③“a=1”是“函数y=cos2ax的最小正周期为π”的充分不必要条件
④直线x-2y+5=0与圆x2+y2=8交于A、B两点,则|AB|=2
2

⑤若直线2ax-bx+8=0(a>0,b>0)平分圆x2+y2+4x-8y+1=0周长则
8
a
+
2
b
最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题:
①任意n∈N*,(n2-5n+5)2=1.
②已知f(x)=
x
1+x2
,则
f(f(f(…)))
 n个
=
x
1+nx2

③设全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},则CU(A∪B)={1,2,3,5,6}.
④定义在R上的函数y=f(x)在区间(1,2)上存在唯一零点的充要条件是f(1)•f(2)<0.
⑤已知a>0,b>0,则
1
a
+
1
b
+2
ab
的最小值是4.
其中正确命题的序号是
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

规定函数y=f(x)图象上的点到坐标原点距离的最小值叫做函数y=f(x)的“中心距离”,给出以下四个命题:以下命题是真命题的是
 
(写出所有其命题的序号)
①函数y=
1
x
的“中心距离”大于1;
②函数y=
5-4x-x2
的“中心距离”大于1;
③若函数y=f(x)(x∈R)与y=g(x)(x∈R)的“中心距离相等”,则函数L(x)=f(x)-g(x)至少有一个零点;
④f(x)是其定义域上的奇函数,是它的“中心距离”为0的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省攀枝花七中高三(下)开学数学试卷(理科)(解析版) 题型:填空题

给出以下5个命题:
①曲线x2-(y-1)2=1按平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量夹角为锐角θ,且满足 ,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为   

查看答案和解析>>

同步练习册答案