精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为(  )
A、16
3
π
B、32
3
π
C、48π
D、64
3
π
考点:球内接多面体
专题:
分析:由题意把A、B、C、P扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的体积.
解答: 解:由题意画出几何体的图形如图,
把A、B、C、P扩展为三棱柱,
上下底面中心连线的中点与A的距离为球的半径,
PA=2AB=6,OE=3,△ABC是正三角形,∴AB=3,
∴AE=
2
3
AB2-(
1
2
AB)2
=
3

AO=
32+(
3
)2
=2
3

所求球的体积为:
3
(2
3
3=32
3
π.
故选:B.
点评:本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足约束条件:
x≥2
y≥x
2x+y≤12
,则z=x2+y2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
π
3
0
sinxdx
,则(x+
1
ax
)6
的展开式中的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤2
y≤x
y≥0
,则z=3x+y的最大值是(  )
A、0B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={X∈N+|x2-x-6<0},i为虚数单位,复数z=
2
1+i
的实部,虚部,模分别为a,b,t,则下列选项正确的是(  )
A、a+b∈MB、t∈M
C、b∈MD、a∈M

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足条件
3x-5y+6≥0
2x+3y-15≤0
y≥0
,当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是(  )
A、(-
2
3
3
5
)
B、(-
2
3
3
4
)
C、(-
3
4
2
3
)
D、(
3
4
3
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足:-1<a-b<3且2<a+b<4,则2a-3b的取值范围是(  )
A、(-
13
2
 ,
17
2
)
B、(-
3
2
 ,
11
2
)
C、(-
9
2
 ,
13
2
)
D、(-
7
2
 ,
13
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:①2013年考入清华大学的性格外向的学生能组成一个集合;②空集∅⊆{0};③数集{2x,x2-x}中,实数x的取值范围是{x|x≠0}.其中正确的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)求证:以AB为直径的圆过原点;
(Ⅲ)若坐标原点关于直线l的对称点P在抛物线C2上,直线l与椭圆C1相切,求椭圆C1的标准方程.

查看答案和解析>>

同步练习册答案