精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的四棱锥中,底面为菱形,,为正三角形.

(1)证明:

(2)若,四棱锥的体积为16,求的长.

【答案】(1)见解析(2)

【解析】分析:(1)由正三角形的性质可得,根据线面垂直的判定定理可得平面,由线面垂直的性质可得结论;(2)根据勾股定理,,结合可得,平面,设,利用棱锥的体积公式列方程解得,由勾股定理可得的长.

详解:(1)证明:取中点为,连接

∵底面为菱形,,

为正三角形,

又∵为正三角形,

又∵平面,平面

平面

平面

.

(2)法一:设,则

在正三角形中,,同理

又∵平面平面

平面,

.

法二:设,则

在正三角形中,,同理

又∵平面平面

平面,

连接,

∵在中,

∴由余弦定理得

∴在中,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:,直线都不是曲线的切线;

(2)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.

该公司将近天,每天揽件数量统计如下:

包裹件数范围

包裹件数

(近似处理)

天数

(1)某人打算将 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;

(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,曲线C的参数方程是(θ为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为:

(1)求曲线C的极坐标方程;

(2)设直线θ=与直线l交于点M,与曲线C交于P,Q两点,已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则的取值范围是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点F为圆C的圆心.

求抛物线的方程与其准线方程;

直线l与圆C相切,交抛物线于AB两点;

若线段AB中点的纵坐标为,求直线l的方程;

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,且这六名同学答题正确与否相互之间没有影响.

1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;

2)用表示甲班总得分,求随机变量的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)与函数ygx)的图象如图所示,则函数yfxgx)的图象可能是下面的(  )

A.B.

C.D.

查看答案和解析>>

同步练习册答案