精英家教网 > 高中数学 > 题目详情

求函数f(x)=数学公式的定义域.

解:由题意得:
解之得-5≤x<-1或-1<x≤4
故函数的定义域为{x|-5≤x<-1或-1<x≤4}
分析:求函数的定义域就是求使函数有意义的自变量的取值范围,由函数的解析式可得解出此不等式组的解集即可得到函数的定义域
点评:本题考查函数的定义域的求法,理解函数的定义是解此类题的关键,求函数的定义域一般要注意一些规则,如:分母不为0,偶次根号下非负,对数的真数大于0等
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
b
x
,曲线y=f(x)在点M(
3
,f(
3
))
处的切线方程为2x-3y+2
3
=0

(Ⅰ)求f(x)的解析式;       
(Ⅱ)求函数f(x)的单调递减区间
(Ⅲ)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若任意直线l过点F(0,1),且与函数f(x)=
1
4
x2
的图象C交于两个不同的点A,B,分别过点A,B作C的切线,两切线交于点M,证明:点M的纵坐标是一个定值,并求出这个定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求实数a的取值范围;
(3)求证:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e为无理数,约为2.71828).

查看答案和解析>>

同步练习册答案