精英家教网 > 高中数学 > 题目详情
19.函数f(x)是奇函数,且在(0,+∞)内是单调递增函数,若f(3)=0,则不等式xf(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

分析 易判断f(x)在(-∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.

解答 解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,
∴f(x)在(-∞,0)上也是增函数,
由f(3)=0,得f(-3)=-f(3)=0,
即f(-3)=0,
作出f(x)的草图,如图所示:
由图象,得xf(x)<0?$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
解得0<x<3或-3<x<0,
∴xf(x)<0的解集为:(-3,0)∪(0,3),
故选:D.

点评 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{3}$,记椭圆和双曲线的离心率分别为e1,e2,则$\frac{1}{{e}_{1}{e}_{2}}$的最大值为(  )
A.3B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.平面ADE∩平面ABC=l.
(1)求证:DE∥l;
(2)求证:DE⊥平面PAC;
(3)若二面角A-DE-P为直二面角,求PE:PC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若一个圆锥的侧面展开图恰好是一个半圆,则这个圆锥的侧面积与表面积之比为2:3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,对任意实数x都有f(x)=-$\frac{1}{f(x+\frac{3}{2})}$,且f(-1)=1,f(0)=-2,则f(0)+f(1)+…+f(2015)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合A={(x,y)|y=|x|},集合B={(x,y)|y>0,x∈R},则下列说法正确的是(  )
A.A⊆BB.B⊆A
C.A∩B=∅D.集合A、B间没有包含关系

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}为等比数列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2014(a2012+2a2014+a2016)的值为4π2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(cosx,2cosx),$\overrightarrow{b}$=(2cosx,sinx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)把f(x)的图象向右平移$\frac{π}{6}$个单位得g(x)的图象,求g(x)的单调递增区间; 
(2)当$\vec a≠\vec 0,\vec a$与$\vec b$共线时,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=lg(100-x2)的值域是(-∞,2].

查看答案和解析>>

同步练习册答案