精英家教网 > 高中数学 > 题目详情
=(),=,f(x)=
①求f(x)图象对称中心坐标
②若△ABC三边a、b、c满足b2=ac,且b边所对角为x,求x的范围及f(x)值域.
【答案】分析:①利用向量的数量积运算及三角恒等变换公式对解析式进行化简,然后再由解析式求对称中心的坐标
②先由余弦定理表示出角x的余弦,再根据基本不等式求出其取值范围,以此范围做定义域,利用三角函数的性质求出值域.
解答:解:①f(x)=
=kπ
∴x=,k∈z,
f(x)图象对称中心坐标为:(),k∈z.




点评:本题考查正弦函数的对称性及求三角函数的值域,解题的关键是对三角函数的解析式进行化简,根据其性质求对称中心的坐标,第二问中利用余弦定理表示出角的函数,再利用基本不等式求出余弦值的范围,知识性很强,是本题中的难点,解题时要认真体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
ax
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
5
)
的图象与直线y=-1的交点中最近的两点间的距离为
π
3
,则函数f(x)的最小正周期等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下伪代码:
Read  x;
If  x≤-1  Then;
f(x)←x+2;
Else;
If-1<x≤1  Then;
f(x)←x2
Else;f(x)←-x+2;
End  If;
Print  f(x);
根据以上伪代码,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,1),
b
=(1,0),
c
满足
a
c
=0,且|
a
|
=|
c
|
b
c
>0
(I)求向量
c

(II)若映射f:(x,y)→(x′,y′)=x
a
+y
c

①求映射f下(1,2)原象;
②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

21、已知函数f(x)=x2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

查看答案和解析>>

同步练习册答案