精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求曲线的斜率为1的切线方程;

(Ⅱ)当时,求证:

(Ⅲ)设,记在区间上的最大值为Ma),当Ma)最小时,求a的值.

【答案】(Ⅰ).

(Ⅱ)见解析;

(Ⅲ).

【解析】

()首先求解导函数,然后利用导函数求得切点的横坐标,据此求得切点坐标即可确定切线方程;

()由题意分别证得即可证得题中的结论;

()由题意结合()中的结论分类讨论即可求得a的值.

(Ⅰ),令或者.

时,,此时切线方程为,即

时,,此时切线方程为,即

综上可得所求切线方程为.

(Ⅱ)设,令或者,所以当时,为增函数;当时,为减函数;当时,为增函数;

,所以,即

同理令,可求其最小值为,所以,即,综上可得.

(Ⅲ)由(Ⅱ)知

所以中的较大者,

,即时,

,即时,

所以当最小时,,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.

的分组

企业数

2

24

53

14

7

1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;

2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,记在区间的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①命题,则的否命题为,则

的必要不充分条件;

命题,使得的否定是:,均有

④命题,则的逆否命题为真命题

其中所有正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】男运动员名,女运动员名,其中男女队长各人,选派人外出比赛,在下列情形中各有多少种选派方法.

1)任选

2)男运动员名,女运动员

3)至少有名女运动员

4)队长至少有一人参加

5)既要有队长,又要有女运动员

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2cm,当一条垂直于底边BC(垂足为F)的直线lB点开始由左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BFx(0≤x≤7),左边部分的面积为y,求yx之间的函数关系式,画出程序框图,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,一艺术拱门由两部分组成,下部为矩形的长分别为,上部是圆心为的劣弧

1)求图1中拱门最高点到地面的距离;

2)现欲以B点为支点将拱门放倒,放倒过程中矩形所在的平面始终与地面垂直,如图2、图3、图4所示.设与地面水平线所成的角为.记拱门上的点到地面的最大距离为,试用的函数表示,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程

年份序号x

1

2

3

4

5

6

7

8

9

年养殖山羊万只

根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:

试估计:该县第一年养殖山羊多少万只

到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案