精英家教网 > 高中数学 > 题目详情

【题目】近年来,某地区积极践行“绿水青山就是金山银山”的绿色发展理念年年初至年年初,该地区绿化面积(单位:平方公里)的数据如下表:

年份

年份代号

绿化面积

(1)求关于的线性回归方程;

(2)利用(1)中的回归方程,预测该地区年年初的绿化面积,并计算年年初至年年初,该地区绿化面积的年平均增长率约为多少.

(附:回归直线的斜率与截距的最小二乘法估计公式分别为

【答案】(1) ;(2)见解析.

【解析】

(1)利用公式计算回归方程即可.

(2)利用(1)中的回归方程预测绿化面积为,设年平均增长率为,则有解这个方程可得年平均增长率.

(1)

线性回归方程为

(2)将年年号代入,预测绿化面积为平方公里,

设年平均增长率为,则

年平均增长率约为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列,且对任意n恒成立.

(1)求证:(n);

(2)求证:(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,圆.

1)求的取值范围,并求出圆心坐标;

2)有一动圆的半径为,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·吉林期末]一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.

(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;

(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心为(11),直线与圆C相切.

1)求圆C的标准方程;

2)若直线过点(23),且被圆C所截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在抽取彩票双色球中奖号码时,有33个红色球,每个球的编号分别为010233.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数字3开始,从左向右读数,则依次选出的第3个红色球的编号为(

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

A.21B.32C.09D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.

(1)求椭圆的方程;

(2)过椭圆左顶点做两条互相垂直的直线,且分别交椭圆于两点(不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于,都有,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,的中点.

(I)若上的一点,且与直线垂直,求的值;

(Ⅱ)在(I)的条件下,设异面直线所成的角为45°,求点到平面的距离.

查看答案和解析>>

同步练习册答案