A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
分析 根据题意表示出直线方程,代入抛物线方程消去x,利用求根公式求出B,C的纵坐标,利用|AB|=$\frac{1}{3}$|BC|,建立等式,把A,B的纵坐标带入即可求得k.
解答 解:依题意知直线方程为y=k(x+1),代入抛物线方程,整理得ky2-4y+4k=0,
解得yB=$\frac{2-2\sqrt{1-{k}^{2}}}{k}$,yC=$\frac{2+2\sqrt{1-{k}^{2}}}{k}$,
∵|AB|=$\frac{1}{3}$|BC|,∴yB=$\frac{1}{4}$yC,
∴$\frac{2-2\sqrt{1-{k}^{2}}}{k}$=$\frac{1}{4}$•$\frac{2+2\sqrt{1-{k}^{2}}}{k}$,
∵k>0,∴求得k=$\frac{4}{5}$.
故选:C.
点评 本题主要考查了直线与抛物线的位置关系.一般解法是设出直线方程,与抛物线方程联立进行消元,利用转化为一元二次方程的问题进行解决.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | ±$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com