精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+)=1

1)求直线l的直角坐标方程和曲线C的普通方程;

2)已知点M 20),若直线l与曲线C相交于PQ两点,求的值.

【答案】1l C方程为 ;(2

【解析】

1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
2)利用一元二次方程根和系数关系式的应用求出结果.

(1)曲线C的参数方程为m为参数),

两式相加得到,进一步转换为

直线l的极坐标方程为ρcosθ+)=1,则

转换为直角坐标方程为

2)将直线的方程转换为参数方程为t为参数),

代入得到t1t2PQ对应的参数),

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角ABC的对边分别为abc,且

1)求A

2)若,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱的所有棱长都为2,且.

1)证明:平面平面

2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥SABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点 E.若SAAB=3,则△SED面积的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国一带一路战略构思提出后,某科技企业为抓住一带一路带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本万元,当年产量不足60台时,万元;当年产量不小于60台时,万元若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.

求年利润万元关于年产量的函数关系式;

当年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,过坐标原点和点分别作曲线的切线,则直线轴所围成的封闭图形的面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且

为等边三角形,平面平面;点分别为的中点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案