平面上有三个点A(-2,y),B(0,),C(x,y),若⊥,则动点C的轨迹方程是_________.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题
斜率为1的直线l与椭圆+y2=1交于不同两点A,B,则|AB|的最大值为( )
(A)2 (B)
(C) (D)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:填空题
设连接双曲线-=1与-=1(a>0,b>0)的4个顶点的四边形面积为S1,连接其4个焦点的四边形面积为S2,则的最大值为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:选择题
已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在的直线,直线l的方程为ax+by=r2,那么( )
(A)m∥l,且l与圆相交 (B)m⊥l,且l与圆相切
(C)m∥l,且l与圆相离 (D)m⊥l,且l与圆相离
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:解答题
已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:选择题
已知点F(,0),直线l:x=-,点B是l上的动点,若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是( )
(A)双曲线 (B)椭圆
(C)圆 (D)抛物线
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:填空题
已知定点A(1,1),B(3,3),动点P在x轴上,则|PA|+|PB|的最小值是 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十第三章第四节练习卷(解析版) 题型:填空题
设函数y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论中:
①图象关于点(,0)对称;
②图象关于点(,0)对称;
③在[0,]上是增函数;
④在[-,0]上是增函数.
正确结论的编号为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十八第四章第四节练习卷(解析版) 题型:填空题
如图,已知=a,=b,任意点M关于点A的对称点为S,点S关于点B的对称点为N.设|a|=1,|b|=2,a与b的夹角为30°,若⊥(λa+b),则实数λ= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com