精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的正半轴重合,直线为参数),圆.

(Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

(Ⅱ)已知是直线上一点,是圆上一点,求的最小值.

【答案】(1),(2)

【解析】试题分析:(1)根据加减消元得直线的普通方程,根据将圆的极坐标方程化为直角坐标方程;(2)根据直线与圆位置关系得的最小值为圆心到直线距离减去半径,根据点到直线距离公式计算可得结果.

试题解析:(Ⅰ)消去直线参数方程中的得,

得,,将代入得圆的直角坐标方程为.

(Ⅱ)由()知,圆的圆心(1,0),半径为1,

表示圆上点与直线上点的距离,

∵圆心到直线的距离为=

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=(x+1)2与圆 (r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(1)求r;
(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(Ⅰ)写出曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,点A1在底面ABC的投影是线段BC的中点O.

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数h(x)满足
①h(0)=1,h(1)=0;
②对任意a∈[0,1],有h(h(a))=a;
③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)= (λ>﹣1,p>0)
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p= (n∈N+)时h(x)的中介元为xn , 且Sn= ,若对任意的n∈N+ , 都有Sn ,求λ的取值范围;
(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求证:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣ (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

查看答案和解析>>

同步练习册答案