精英家教网 > 高中数学 > 题目详情
17.计算lg4+lg25=(  )
A.2B.3C.4D.10

分析 利用对数的运算法则即可得出.

解答 解:原式=lg(4×25)=lg102=2.
故选:A.

点评 本题考查了对数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2ax+4(a-1)ln(x+1),其中实数a<3.
(Ⅰ)判断x=1是否为函数f(x)的极值点,并说明理由;
(Ⅱ)若f(x)≤0在区间[0,1]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,当(a+4b)2+$\frac{1}{ab}$取到最小值时,b=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,△AB1C1,△C1B2C2,△C2B3C3是三个边长为2的等边三角形,且有一条边在同一直线上,边B3C3上有2个不同的点P1,P2,则$\overrightarrow{A{B_2}}•(\overrightarrow{A{P_1}}+\overrightarrow{A{P_2}})$=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于正整数集合A={a1,a2,…,an}(n∈N*,n≥3),如果去掉其中任意一个元素ai(i=1,2,…,n)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A为“和谐集”.
(Ⅰ)判断集合{1,2,3,4,5}是否是“和谐集”(不必写过程);
(Ⅱ)求证:若集合A是“和谐集”,则集合A中元素个数为奇数;
(Ⅲ)若集合A是“和谐集”,求集合A中元素个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线y=x被圆(x-1)2+y2=1所截得的弦长为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{3}$+y2=1两焦点之间的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

已知, ,则 上的投影为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市为鼓励居民节约用水,将实行阶梯水价,该市每户居民每月用水量划分为三级,水价实行分级递增.第一级水量:用水量不超过20吨,水价标准为1.5元/吨; 第二级水量:用水量超过20但不超过30吨,超出第一级水量的部分,水价为2.25元/吨; 第三级水量:用水量超过30吨,超出第二级水量的部分,水价为3.0元/吨.随机调查了该市1000户居民,获得了他们某月的用水量数据,整理得到如下的频率分布表:
用水量(吨)[0,10](10,20](20,30](30,40](40,50]合计
频数200400200b1001000
频率0.2a0.20.1c1
(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;从该市调查的1000户居民中随机抽取一户居民,求该户居民用水量不超过30吨的概率;
(Ⅱ)从1000户居民中按用水三个等级分层抽取5户幸运者,发给大奖两份和幸运奖三份共5份,每户一份,求两份大奖获得者的都是节水型用户(用水量不超过20吨的居民)的概率.

查看答案和解析>>

同步练习册答案