精英家教网 > 高中数学 > 题目详情
11.将函数y=sin(x-$\frac{π}{12}$)图象上的点P($\frac{π}{4}$,t)向左平移s(s>0)个单位,得到点P′,若P′位于函数y=sin2x的图象上,则(  )
A.t=$\frac{1}{2}$,s的最小值为$\frac{π}{6}$B.t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{6}$
C.t=$\frac{1}{2}$,s的最小值为$\frac{π}{12}$D.t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{12}$

分析 将x=$\frac{π}{4}$代入得:t=$\frac{1}{2}$,进而求出平移后P′的坐标,进而得到s的最小值.

解答 解:将x=$\frac{π}{4}$代入得:t=sin$\frac{π}{6}$=$\frac{1}{2}$,进而求出平移后P′的坐标,
将函数y=sin(x-$\frac{π}{12}$)图象上的点P($\frac{π}{4}$,t)向左平移s(s>0)个单位,
得到点P′,若P′位于函数y=sin2x的图象上,
则sin($\frac{π}{2}$+2s)=cos2s=$\frac{1}{2}$,
则2s=±$\frac{π}{3}$+2kπ,k∈Z,
则s=±$\frac{π}{6}$+kπ,k∈Z,
由s>0得:当k=0时,s的最小值为$\frac{π}{6}$,
故选:A.

点评 本题考查的知识点是函数y=Asin(ωx+φ)(A>0,ω>0)的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在同一个球面上,则该球的内接正方体的表面积为(  )
A.$\frac{19}{6}$B.$\frac{38}{3}$C.$\frac{57}{8}$D.$\frac{19}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某餐厅装修,需要大块胶合板20张,小块胶合板50张.已知市场出售A、B两种不同规格的胶合板,经过测算,A种规格的胶合板可同时裁得大块胶合板2张,小块胶合板6张,B种规格的胶合板可同时裁得大块胶合板1张,小块胶合板2张.已知A种规格胶合板每张200元,B种规格胶合板每张72元,分别用x,y表示购买A、B两种不同规格胶合板的张数.
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)根据施工需求,A,B两种不同规格的胶合板各买多少张花费资金最少?并求出最少资金数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(x+2)n=xn+axn-1+…+bx+c(n∈N*,n≥3),且b=4c,则a的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,∠PAQ是某海湾旅游区的一角,其中∠PAQ=120°,为了营造更加优美的旅游环境,旅游区管委员会决定在直线海岸AP和AQ上分别修建观光长廊AB和AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价为120万元,同时在线段BC上靠近点B的三等分点D处建一个观光平台,并建水上直线通道AD(平台大小忽略不计),水上通道的造价是1000元/米.
(1)若规划在三角形ABC区域内开发水上游乐项目,要求△ABC的面积最大,那么AB和AC的长度分别为多少米?
(2)在(1)的条件下,建直线通道AD还需要多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U={1,3,5},集合A={1,5},则∁UA={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2log3(3-x)-log3(1+x).
(1)求f(x)的定义域;
(2)当0≤x≤2时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={y∈N|y<6},N={x|log2(x-1)≤2},则M∩N=(  )
A.(1,5]B.(-∞,5]C.{1,2,3,4,5}D.{2,3,4,5}

查看答案和解析>>

同步练习册答案