精英家教网 > 高中数学 > 题目详情
5.已知斜三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,∠BAA1=$\frac{2π}{3}$,∠CAA1=$\frac{π}{3}$,AB=AC=1,AA1=2,点O是B1C与BC1的交点.
(1)求AO的距离;
(2)求异面直线AO与BC所成的角的余弦值.

分析 (1)设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,$\overrightarrow{AO}$=$\overrightarrow{AB}+\overrightarrow{BO}$=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{BC}+\overrightarrow{C{C}_{1}}$)=$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$),由此能求出AO.
(2)由得${\overrightarrow{AO}}^{2}=\frac{3}{2}$,$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,得$\overrightarrow{AO}•\overrightarrow{BC}$=1,|$\overrightarrow{BC}$|=$\sqrt{2}$,由此能求出异面直线AO与BC所成的角的余弦值.

解答 解:(1)设$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,
$\overrightarrow{AO}$=$\overrightarrow{AB}+\overrightarrow{BO}$=$\overrightarrow{AB}$+$\frac{1}{2}$($\overrightarrow{BC}+\overrightarrow{C{C}_{1}}$)=$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$),
∴AO=|$\overrightarrow{AO}$|=$\sqrt{\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})^{2}}$=$\frac{\sqrt{6}}{2}$.
(2)由(1),得${\overrightarrow{AO}}^{2}=\frac{3}{2}$,$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,
∴$\overrightarrow{AO}•\overrightarrow{BC}$=1,|$\overrightarrow{BC}$|=$\sqrt{2}$,cos<$\overrightarrow{AO},\overrightarrow{BC}$>=$\frac{\sqrt{3}}{3}$,
∴异面直线AO与BC所成的角的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查线段长的求法,考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知命题p:关于x的方程4x2-2ax+2a+5=0最多只有一个实根,命题q:{x|x2-2x+1-m2≤0,m>0}.若非p是非q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆x2+y2=4,过点A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程为(  )
A.(x-1)2+y2=4  (-1≤x<$\frac{1}{2}$)B.(x-1)2+y2=4 (0≤x<1)
C.(x-2)2+y2=4  (-1≤x<$\frac{1}{2}$)D.(x-2)2+y2=4 (0≤x<1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的内角A,B,C所对的边分别为a,b,c,若(3b-c)cosA=acosC,${S_△}_{ABC}=\sqrt{2}$,则$\overrightarrow{BA}•\overrightarrow{AC}$=(  )
A.$\sqrt{2}$B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{3}$-y2=1的两焦点作实轴的垂线,分别与渐近线交于A、B、C、D四点,则矩形ABCD的面积为(  )
A.$\frac{16}{3}$$\sqrt{3}$B.3C.8D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知tanα=2,求$\frac{3sinα-2cosα}{sinα+cosα}$的值.
(2)已知$sinα+cosα=\sqrt{2}$,求$tanα+\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有四个命题
①p:f(x)=lnx-2+λ在区间(1,2)上有一个零点,q:e0.2>e0.3,p∧q为真命题
②当x>1时,f(x)=x2,g(x)=x${\;}^{\frac{1}{3}}$,h(x)=x-2的大小关系是h(x)<g(x)<f(x)
③若f′(x0)=0,则f(x)在x=x0处取得极值
④若不等式2-3x-2x2>0的解集为P,函数y=$\sqrt{x+2}$+$\sqrt{1-2x}$的定义域为Q,则“x∈P”是“x∈Q”的充分不必要条件,其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个命题:
①若命题p:?x0∈R,x02+x0+1<0,则?p:?x∈R,x2+x+1≥0;
②“a>b”是“ac2>bc2”的必要条件;
③命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0没有实数根,则m≤0”;
④已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等比数列{an}中,${a_2}=8,\;\;16{a_4}^2={a_1}•{a_5}$,则等比数列{an}的前n项积Tn中最大的值是(  )
A.T3B.T4C.T5D.T6

查看答案和解析>>

同步练习册答案