分析 由已知得点P(x,y)到F1(-6,0),F2(6,0)的距离之和为20,由此利用椭圆定义能求出方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化简的结果.
解答 解:∵方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20,
∴点P(x,y)到F1(-6,0),F2(6,0)的距离之和为20,
∵20>|F1F2|,
∴方程是以F1(-6,0),F2(6,0)为焦点,以10为长轴的椭圆,
∴a=10,c=6,b=$\sqrt{100-36}$=8,
∴方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化简的结果是:$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.
故答案为:$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.
点评 本题考查方程化简结果的求法,是基础题,解题时要认真审题,注意椭圆定义的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\{y|0<y<\frac{1}{2}\}$ | B. | {y|0<y<1} | C. | $\{y|\frac{1}{2}<y<1\}$ | D. | $\{y|0≤y<\frac{1}{2}\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A2n+1-1 | B. | 2n+2-1 | C. | $\frac{(n+2)(1+{2}^{n+1})}{2}$ | D. | $\frac{(n+1)(1+{2}^{n+1})}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)∈M且g(x)∈M | B. | f(x)∉M,g(x)∈M | C. | f(x)∈M,g(x)∉M | D. | f(x)∉M且g(x)∉M |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com