精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=a(x-\frac{1}{x})-2lnx\;(a∈R)$.
(1)求函数f(x)的单调增区间;
(2)设函数$g(x)=-\frac{a}{x}$.若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,求实数a的取值范围.

分析 (1)先求出函数的导数,通过讨论①当a≤0时②当0<a<1时③当a≥1时,从而得出函数的单调区间;
(2)将问题至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,转化为否定是?x∈[1,e],有f(x)≤g(x)成立,从而求出a的范围.

解答 解:(1)∵函数f(x)=a(x-$\frac{1}{x}$)-2lnx,其定义域为x>0
∴f′(x)=a(1+$\frac{1}{{x}^{2}}$)-$\frac{2}{x}$=$\frac{a(1+{x}^{2})-2x}{{x}^{2}}$,
令a(1+x2)-2x=ax2-2x+a=0,
∴△=4-4a2≥0,解得:-1≤a≤1
∵x>0,∴0<a≤1时f′(x)=0有解,
①当a≤0时,f′(x)<0,∴函数f(x)在定义域内单调递减;
②当0<a<1时,令a(1+x2)-2x=0,解得:x=$\frac{1+\sqrt{1-{a}^{2}}}{a}$,
x∈(0,$\frac{1+\sqrt{1-{a}^{2}}}{a}$)时,f′(x)>0,x∈($\frac{1+\sqrt{1-{a}^{2}}}{a}$,+∞)时,f′(x)<0,
③当a≥1时,f′(x)≥0,函数f(x)在定义域内单调增,
综上:当a≤0时,f′(x)<0,函数f(x)在定义域内单调递减,
当0<a<1时,x∈(0,$\frac{1+\sqrt{1-{a}^{2}}}{a}$)时,函数f(x)单调递增;,x∈($\frac{1+\sqrt{1-{a}^{2}}}{a}$,+∞)时,函数f(x)单调递减;
当a≥1时,函数f(x)在定义域内单调增.
(2)至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,
否定是?x∈[1,e],有f(x)≤g(x)成立,
∵f(x)-g(x)=ax-2lnx,令ax-lnx≤0,解得:a≤$\frac{2lnx}{x}$,
令h(x)=$\frac{2lnx}{x}$(x∈[1,e]),
∴h′(x)=$\frac{2(1-lnx)}{{x}^{2}}$>0,
∴h(x)在[1,e]递增,
∴h(x)min=h(1)=0,
∴a≤0,
故若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,则只需a>0即可
实数a的取值范围为(0,+∞).

点评 本题考查了函数的单调性,函数的最值问题,考查导数的应用,分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,曲线y=x2-8x+2与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)设圆C圆心为C,点D坐标为(2,$\frac{1}{2}$),试在直线x-y-6=0上确定一点P,使得|PC|+|PD|最小,求此时点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是(  )
A.${[{1-{{({\frac{5}{6}})}^{10}}}]^5}$B.${[{1-{{({\frac{5}{6}})}^6}}]^{10}}$C.1 $-{[{1-{{({\frac{1}{6}})}^5}}]^{10}}$D.1$-{[{1-{{({\frac{1}{6}})}^{10}}}]^5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一个通项公式是(  )
A.-$\frac{1}{{2}^{n}}$$\frac{(-1)^{n}}{{2}^{n}}$B.$\frac{(-1)^{n}}{{2}^{n}}$C.$\frac{(-1)^{n+1}}{{2}^{n}}$D.$\frac{(-1)^{n}}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知线段AB的中点为C,则$\overrightarrow{AB}$-$\overrightarrow{BC}$=(  )
A.3$\overrightarrow{AC}$B.$\overrightarrow{AC}$C.$\overrightarrow{CA}$D.3$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若直线x+(2-a)y+1=0与圆x2+y2-2y=0相切,则a的值为(  )
A.1或-1B.2或-2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的首项a1=2015,数列{an}前n项和记为Sn
(1)若${S_3}=\frac{6045}{4}$,求等比数列{an}的公比q;
(2)在(1)的条件下证明:S2≤Sn≤S1
(3)数列{an}前n项积记为Tn,在(1)的条件下判断|Tn|与|Tn+1|的大小,并求n为何值时,Tn取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤10}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=x+$\frac{y}{2}$的最大值为(  )
A.7B.1C.10D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若a=2,∠C=$\frac{π}{3}$,S△ABC=2$\sqrt{3}$,则c=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

同步练习册答案