精英家教网 > 高中数学 > 题目详情
19.设集合A={1,3},集合B={1,2,5},则集合A∪B=(  )
A.{1,2,5}B.{1}C.{1,2,3,5}D.{2,3,5}

分析 直接由并集运算得答案.

解答 解:由集合A={1,3},集合B={1,2,5},
得集合A∪B={1,3}∪{1,2,5}={1,2,3,5}.
故选:C.

点评 本题考查了并集及其运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定义域是(  )
A.2kπ+π≤x≤2kπ+$\frac{3π}{2}$,k∈ZB.2kπ+π<x<2kπ+$\frac{3π}{2}$,k∈Z
C.2kπ+π≤x<2kπ+$\frac{3π}{2}$,k∈ZD.2kπ+π<x<2kπ+$\frac{3π}{2}$或x=kπ,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,则$f(\frac{1}{f(2)})$=$\frac{1}{16}$,若f(x)=3,则x=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x2-2x-8,则当x<0时,函数f(x)的解析式为f(x)=x3-x2-2x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x∈R,则“|x-2|<1”是“x2+x-2>0”的充分不必要条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数a≥0,b≥1且$\frac{{{4^a}+{4^b}}}{{{2^{a+1}}+{2^{b+2}}-1}}=1$,则2a+2b+1的取值范围为[7,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(第一象限内),使得$\overrightarrow{FP}$=3$\overrightarrow{PQ}$,则双曲线离心率的取值范围为(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值$\frac{7}{4}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数h(x)=f(x)-(2t-3)x在[0,1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x<1}\\{4-\sqrt{x-1},x≥1}\end{array}\right.$,求使得f(a)=1的自变量a的取值.

查看答案和解析>>

同步练习册答案