精英家教网 > 高中数学 > 题目详情

【题目】设x,y满足约束条件 ,且目标函数z=ax+y仅在点(4,1)处取得最大值,则原点O到直线ax﹣y+17=0的距离d的取值范围是( )
A.(4 ,17]
B.(0,4
C.( ,17]
D.(0,

【答案】B
【解析】解:∵约束条件 作出可行域,如右图可行域,

∵目标函数z=ax+y仅在点A(4,1)取最大值,

当a=0时,z=y仅在y=1上取最大值,不成立;

当a<0时,目标函数z=ax+y的斜率k=﹣a>0,

目标函数在(4,1)取不到最大值.

当a>0时,目标函数z=ax+y的斜率k=﹣a,小于直线x+4y﹣8=0的斜率﹣ ,∴a>

综上, <a.

原点O到直线ax﹣y+17=0的距离d= <4

则原点O到直线ax﹣y+17=0的距离d的取值范围是:(0,4

所以答案是:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )
A.
B.8
C.
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0(a>0);命题q:实数x满足
(1)若a=1,且“p且q”为真,求实数x的取值范围
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosB=4,bsinA=3.
(1)求tanB及边长a的值;
(2)若△ABC的面积S=9,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+2|+|x﹣2|<18的解集为A.
(1)求A;
(2)若a,b∈A,x∈(0,+∞),不等式a+b<x +m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B为钝角.
(1)求角C的大小;
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如何把一条长为m的绳子截成3段,各围成一个正方形,使这3个正方形的面积和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,MCN是某海湾旅游区的一角,为营造更加优美的旅游环境,旅游区管委会决定建立面积为4 平方千米的三角形主题游戏乐园ABC,并在区域CDE建立水上餐厅.已知∠ACB=120°,∠DCE=30°.
(1)设AC=x,AB=y,用x表示y,并求y的最小值;
(2)设∠ACD=θ(θ为锐角),当AB最小时,用θ表示区域CDE的面积S,并求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+2)2+y2=5,直线l:mx﹣y+1+2m=0,m∈R.
(1)求证:对m∈R,直线l与圆C总有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数m,使得圆C上有四点到直线l的距离为 ?若存在,求出m的范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案