精英家教网 > 高中数学 > 题目详情
5.画出函数f(x)=x2-2|x|-3的图象,并根据图象写出函数f(x)的单调区间以及在该区间的单调性.

分析 根据x的符号分段写出f(x)的解析式,做出相应的函数图象,根据图象写出单调区间和单调性.

解答 解:当x≥0时,f(x)=)=x2-2x-3,
当x<0时,f(x)=x2+2x-3,
作出函数图象如图:

由图象可知f(x)的增区间是(-1,0],[1,+∞),
减区间(-∞,-1],(0,1).

点评 本题考查了分段函数的图象,单调区间和单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.试判断函数f(x)=lg(x-2010)
(1)在区间(2010,2012)上有没有零点?
(2)在区间(2012,+∞)上有没有零点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x)对任意的实数x,y∈R都有f(x+y)=f(x)+f(y)且x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)若f(4)=6,解不等式f(3x2-x-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆x2+y2-2x+4y=0与2tx-y-2-2t=0(t∈R)的位置关系为(  )
A.相离B.相切C.相交D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某设备的使用年限x和维修费用y(万元)有如下统计数据
x3456
y2.5344.5
(1)请根据上表提供的数据,求出y与x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)试估计当使用年限为10年时,维修费用是多少?
(参考数据$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$,其中($\overline{x}$,$\overline{y}$)为样本中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)=|{\frac{1}{x}+a}|+|{x-a}|({x≠0})$
(1)若f(1)>4,求a的取值范围;
(2)证明f(x)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足的约束条件$\left\{\begin{array}{l}{3x+4y-5≥0}\\{y≤2}\\{x≤3}\end{array}\right.$,则z=x2+y2的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对实数a和b,定义运算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,设函数f(x)=(x2-2)?(x-x2),x∈R.若函数y=f(x)-K的图象与x轴恰有三个公共点,则实数K的取值范围是(-2,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=lgx+2x-5的零点x0∈(1,3),对区间(1,3)利用两次“二分法”,可确定x0所在的区间为(2,$\frac{5}{2}$).

查看答案和解析>>

同步练习册答案