精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱为长方体,点上的一点.

(1)若的中点,当为何值时,平面平面

(2)若 ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.

【答案】12时, 取得最大值1.

【解析】试题分析:1)要使平面平面,只需平面.只需,只需,因为的中点,所以,所以;(2)建立空间直角坐标系,写出直线与平面所成角的正弦,利用二次函数求其最大值即可.

试题解析:1)要使平面平面,只需平面.

因为四棱柱为长方体,

所以平面,所以.

又因为,所以只需

只需,只需

因为,所以只需

因为的中点,所以,所以.

所以当时,平面平面.

(2)存在.理由如下:建立如图所示的空间直角坐标系

,所以

,则

设平面的法向量为,则

所以,取,则

所以

设直线与平面所成的角为

,则

所以

所以当,即时, 取得最大值1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设正项数列的前项和为,且满足 ,各项均为正数的等比数列满足.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,数列的前项和为.若对任意 ,均有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),g(x)满足:对于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).当x<0时,f′(x)<0,g′(x)>0,则当x>0时,有(
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)= ,直线l:y=(k﹣3)x﹣k+2
(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值
(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围
(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知射线OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB的中点在直线x﹣2y=0上时,求直线AB的方程;
(2)当△AOB的面积取最小值时,求直线AB的方程.
(3)当PAPB取最小值时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在R上定义运算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:在定义域D内存在实数x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)= ;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的饱和函数”的所有函数的序号为(
A.①③
B.②④
C.①②
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是首项a1=4的等比数列,且S3 , S2 , S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列 的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题是真命题的为(
A.若x2=1,则x=1
B.若x=y,则
C.若x<y,则x2<y2
D.若 ,则x=y

查看答案和解析>>

同步练习册答案