精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=2sinxcosx,x∈R.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)求函数f(x)的最小正周期;
(Ⅲ)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的最大值.

分析 (Ⅰ)利用特殊角的三角函数值即可计算得解.
(Ⅱ)利用三角函数周期公式即可计算得解.
(Ⅲ)由诱导公式,两角和的正弦函数公式化简可得解析式g(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),利用正弦函数的图象和性质即可得解.

解答 解:(Ⅰ)由题意得f($\frac{π}{4}$)=2sin$\frac{π}{4}$cos$\frac{π}{4}$=1,
(Ⅱ)∵f(x)=sin2x,
∴函数f(x)的最小正周期为T=$\frac{2π}{2}$=π,
(Ⅲ)∵g(x)=sin2x+sin(2x+$\frac{π}{2}$)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴当x=k$π+\frac{π}{8}$,k∈Z时,函数g(x)的最大值为$\sqrt{2}$.

点评 本题主要考查了特殊角的三角函数值,三角函数周期公式,诱导公式,两角和的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=-\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x$的极大值点是(  )
A.$-\frac{4}{5}$B.1C.$\frac{7}{6}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,若BB1=$\sqrt{2}$,AB=2$\sqrt{2}$,求点C到直线AB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设抛物线y2=2px(p>0)的焦点为F.若F到直线y=$\sqrt{3}$x的距离为$\sqrt{3}$,则p=(  )
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是(  )
A.($\frac{π}{6}$,$\frac{π}{3}$)B.($\frac{π}{6}$,$\frac{π}{2}$]C.($\frac{π}{3}$,$\frac{π}{2}$]D.($\frac{π}{3}$,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x≤2}\\{-\frac{1}{4}{x}^{2}+2x-3,x>2}\end{array}\right.$,如在区间(1,+∞)上存在n(n≥2,n∈N*)个不同的数x1,x2,…xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是{2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且S1=1,则q=-2,a2=-2,an=(-2)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=cos2x的图象向左平移$\frac{π}{3}$个单位长度,所得图象的函数解析式为(  )
A.$y=cos(2x-\frac{2π}{3})$B.$y=cos(2x+\frac{π}{3})$C.$y=cos(2x+\frac{2π}{3})$D.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知Sn为数列{an}的前n项和,a1=$\frac{1}{2}$,2Sn+1=Sn+$\frac{1}{{2}^{n}}$(n∈N*).根据上述条件可归纳出这个数列的通项公式为an=$\frac{2-n}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案