ÉèxÖá¡¢yÖáÕý·½ÏòµÄµ¥Î»ÏòÁ¿·Ö±ðΪ
i
£¬
j
£¬×ø±êƽÃæÉϵĵãAnÂú×ãÌõ¼þ£º
OA1
=
+
£¬   
AnAn+1
=2n
-
£¨n¡ÊN*£©£®
£¨1£©ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪsn£¬ÇÒsn=
OA1
AnAn+1
£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨2£©ÇóÏòÁ¿ 
OAn+1
µÄ×ø±ê£¬Èô¡÷OA1An+1£¨n¡ÊN*£©µÄÃæ»ýS¡÷OA1An+1¹¹³ÉÊýÁÐ{bn}£¬Ð´³öÊýÁÐ{bn}µÄͨÏʽ£®
£¨3£©Èôcn=
bn
an
-2£¬Ö¸³önΪºÎֵʱ£¬cnÈ¡µÃ×î´óÖµ£¬²¢ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã
רÌ⣺¼ÆËãÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,ƽÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬½áºÏÏòÁ¿´¹Ö±µÄÌõ¼þ£¬¿ÉµÃSn£¬ÔÙÓÉanÓëSnµÄ¹Øϵ£¬¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔËÓÃÏòÁ¿µÄ¶à±ßÐη¨Ôò£¬ÒÔ¼°µÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬µÃµ½An+1µÄ×ø±ê£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½Ãæ»ý£¬¼´ÎªÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÅжÏÊýÁÐ{cn}µÄµ¥µ÷ÐÔ£¬ÔËÓÃ×÷²î·¨£¬¼´Îªcn-cn-1£¬¼´¿ÉÅжÏ×î´óÖµ£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâsn=
OA1
AnAn+1
=2n-1
¢Ù£¬
µ±n=1ʱ£¬a1=s1=2 -1=1£¬
µ±n¡Ý2ʱ£¬sn-1=2n-1-1¢Ú
ÓÉ ¢Ù-¢ÚµÃ£ºan=2n-1-(2n-1-1)=2n-1£¬
ÓÖµ±n=1ʱ£¬a1=1·ûºÏÌâÒ⣬ËùÒÔan=2n-1£¨n¡ÊN*£©                
£¨2£©½â£º
OAn+1
=
OA1
+
A1A2
+¡­+
AnAn+1
=£¨1+2+22+¡­+2n£©
i
+£¨1-1-1-¡­-1£©
j

=£¨2n+1-1£©
i
+£¨1-n£©
j
£¬
ËùÒÔ£¬
OAn+1
=(2n+1-1 £¬ 1-n)
£¬
Óɵ±n¡ÊN*ʱ£¬¡÷OA1An+1µÄ¶¥µã×ø±ê·Ö±ðΪ£º
O(0£¬0) ¡¢A1(1 £¬ 1) ¡¢An+1(2n+1-1 £¬ 1-n)µÃ£¬S¡÷OA1An+1=
1
2
.
111
001
2n+1-11-n1
.
=
1
2
(2n+1+n-2)=2n+
n-2
2
£¬
¼´bn=2n+
n-2
2
£¨n¡ÊN*£©            
£¨3£©cn=
bn
an
-2=
2n+
n-2
2
2n-1
-2=
n-2
2n
£¬
µ±n¡Ý2ʱ£¬cn-cn-1=
n-2
2n
-
n-3
2n-1
=
4-n
2n
£¬
¡à1¡Ün¡Ü3ʱ£¬{cn}ÊǵÝÔöÊýÁУ¬n¡Ý5ʱ£¬{cn}ÊǵݼõÊýÁУ¬
c1£¼c2£¼c3=c4£¾c5£¾c6£¾¡­£¾cn£¾¡­£¬
¡àµ±n=3»òn=4ʱ£¬cnÈ¡µÃ×î´óÖµ£¬c3=c4=
1
8
£®
µãÆÀ£º±¾Ì⿼²éƽÃæÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éÊýÁеÄͨÏîºÍÇ°nÏîºÍµÄ¹Øϵ£¬¿¼²éÊýÁеĵ¥µ÷ÐÔµÄÔËÓ㬿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôy=f£¨x£©µÄ¶¨ÒåÓòÊÇ[0£¬1]£¬Ôòº¯Êýy=f£¨x+1£©µÄ¶¨ÒåÓòÊÇ
 
£¬y=f£¨sinx£©µÄ¶¨ÒåÓòÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ù¾ÝÏÂÁйØϵ£¬Ð´³ö½Ç¦ÁÓë½Ç¦ÂµÄÒ»¸ö¹Øϵʽ£º£¨Óû¡¶ÈÖƱíʾ£©
£¨1£©½Ç¦ÁÓë½Ç¦ÂµÄÖձ߹ØÓÚxÖá¶Ô³Æ£º
 
£»
£¨2£©½Ç¦ÁÓë½Ç¦ÂµÄÖձ߹ØÓÚyÖá¶Ô³Æ£º
 
£»
£¨3£©½Ç¦ÁÓë½Ç¦ÂµÄÖձ߹ØÓÚÔ­µãÖá¶Ô³Æ£º
 
£»
£¨4£©½Ç¦ÁÓë½Ç¦ÂµÄÖձ߹ØÓÚy=xÖá¶Ô³Æ£º
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø¶¨Á½¸ö³¤¶ÈΪ1µÄƽÃæÏòÁ¿
OA
ºÍ
OB
£¬ËüÃǵļнÇΪ60¡ã£®ÈçͼËùʾ£¬µãCÔÚÒÔOΪԲÐĵÄÔ²»¡
AB
Éϱ䶯£®Èô
OC
=x
OA
+y
OB
£¬ÆäÖÐx£¬y¡ÊR£¬Ôòx+2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A¡¢2
B¡¢
2
3
3
C¡¢1
D¡¢
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-3a2x-6a2+3a£¨a£¾0£©ÓÐÇÒ½öÓÐÒ»¸öÁãµãx0£¬Èôx0£¾0£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨-2£¬2£©£¬µ¼º¯ÊýΪf¡ä£¨x£©=x2+2cosxÇÒf£¨0£©=0£¬ÔòÂú×ãf£¨1+x£©+f£¨x2-x£©£¾0µÄʵÊýxµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A¡¢£¨-¡Þ£¬+¡Þ£©
B¡¢£¨-1£¬1£©
C¡¢(-¡Þ£¬1-
2
)¡È(1+
2
£¬+¡Þ)
D¡¢(-1£¬1-
2
)¡È(1£¬1+
2
)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôµãA£¨-3£¬-4£©£¬B£¨6£¬3£©µ½Ö±Ïßl£ºax+y+1=0µÄ¾àÀëÏàµÈ£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A¡¢
7
9
B¡¢-
1
3
C¡¢
7
9
»ò
1
3
D¡¢-
7
9
»ò-
1
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
kx+k(a-1)£¬x¡Ý0
1
3
x3-
1
2
ax2+(a-1)x-a2+2a-2£¬
x£¼0
ÆäÖÐa¡ÊR£¬Èô¶ÔÈÎÒâµÄ·ÇÁãʵÊýx1£¬´æÔÚΨһµÄ·ÇÁãʵÊýx2£¨x1¡Ùx2£©£¬Ê¹µÃf£¨x1£©=f£¨x2£©³ÉÁ¢£¬ÔòkµÄ×î´óֵΪ£¨¡¡¡¡£©
A¡¢-1B¡¢-2C¡¢-4D¡¢-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

°ÑÊýÁÐ{n}£¨n¡ÊN*£©£¬ÒÀ´Î°´µÚ1¸öÀ¨ºÅÒ»¸öÊý£¬µÚ2¸öÀ¨ºÅÁ½¸öÊý£¬µÚ3¸öÀ¨ºÅÈý¸öÊý£¬µÚ4¸öÀ¨ºÅËĸöÊý£¬µÚ5¸öÀ¨ºÅÒ»¸öÊý£¬¡­£¬Ñ­»·Îª£¨1£©£¬£¨2£¬3£©£¬£¨4£¬5£¬6£©£¬£¨7£¬8£¬9£¬10£©£¬£¨11£©£¬£¨12£¬13£©£¬£¨14£¬15£¬16£©£¬£¨17£¬18£¬19£¬20£©£¬£¨21£©£¬¡­£¬ÔòµÚ2012¸öÀ¨ºÅÄÚ¸÷ÊýÖ®ºÍΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸