精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

【答案】(1) ,; (2).

【解析】

(1)将曲线C1的参数方程转化为普通方程,然后由普通方程转化为极坐标方程;再用N表示出M,根据点M在曲线C1上,采用相关点法求轨迹C2的极坐标方程;

(2)根据已知条件,求得 ,通过求解.

(1)由题设,得的直角坐标方程为,即

的极坐标方程为,即

设点,则由已知得,代入的极坐标方程得

(2)将代入的极坐标方程得

又因为,所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数,),且数列是首项为,公差为的等差数列.

1)求证:数列是等比数列;

2)若,当时,求数列的前项和的最小值;

3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB.如果△AMD的面积为1,试求能够放入这个棱锥的最大球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴的交点为,与轴正方向同向的单位向量分别是,且的夹角为,其中。由平面向量基本定理,对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标。在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点(2,1),且方向向量为(4,-5)的直线。

(1)若 ,且的夹角为锐角,求实数m的取值范围;

(2)若,已知点和直线 ①求l的一个法向量;②求点A到直线l的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两颗骰子,计算:

1)事件两颗骰子点数相同的概率;

2)事件点数之和小于7”的概率;

3)事件点数之和等于或大于11”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测量一根新弹簧的劲度系数时,测得了如下的结果:

所挂重量()(x

1

2

3

5

7

9

弹簧长度()(y

11

12

12

13

14

16

1)请在下图坐标系中画出上表所给数据的散点图;

2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

3)根据回归方程,求挂重量为的物体时弹簧的长度.所求得的长度是弹簧的实际长度吗?为什么?

注:本题中的计算结果保留小数点后两位.

(参考公式:

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性,并证明;

2)用定义证明函数上单调递减;

3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差。现有圆心角为,半径等于4米的弧田.下列说法正确的是( )

A. “弦”米,“矢”

B. 按照经验公式计算所得弧田面积()平方米

C. 按照弓形的面积计算实际面积为()平方米

D. 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )

查看答案和解析>>

同步练习册答案