精英家教网 > 高中数学 > 题目详情
“a>0”是“函数f(x)=ax3-x2+x+1在R上为增函数”的(  )
分析:由f(x)的解析式求出f(x)的导函数,因为函数在R上单调递增,所以得到导函数大于等于0恒成立,分a大于0,a等于0和a小于0三种情况讨论,利用二次函数的图象与x轴的交点及开口方向即可得到根的判别式的正负,得到关于a的不等式,求出不等式的解集即可得到a的范围,最后根据充要条件的定义即可得出答案.
解答:解:由函数f(x)=ax3-x2+x+1,得到f′(x)=3ax2-2x+1,
因为函数在R上单调递增,所以f′(x)≥0恒成立,即3ax2-2x+1≥0恒成立,
设h(x)=3ax2-2x+1,
当a>0时,h(x)为开口向上的抛物线,要使h(x)≥0恒成立即△=4-12a≤0,解得a≥
1
3

当a=0时,得到h(x)=-2x+1≥0,解得x≤
1
2
,不合题意;
当a<0时,h(x)为开口向下的抛物线,要使h(x)≥0恒成立不可能.
综上,a的范围为[
1
3
,+∞).
又a∈[
1
3
,+∞)⇒a>0,反之不成立.
故“a>0”是“函数f(x)=ax3-x2+x+1在R上为增函数”的必要不充分条件.
故选B.
点评:此题考查学生会利用导函数的正负判断函数的单调性,掌握不等式恒成立时所满足的条件,考查了分类讨论的数学思想,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、“a>0”是“函数f(x)=x3+ax在区间(0,+∞)上是增函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

“a>0”是“函数f(x)=x2+ax在区间(0,+∞)上为增函数”的(  )
A、充分必要条件B、充分非必要条件C、必要非充分条件D、既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

“a<0”是“函数f(x)=|ax2-x|在区间(0,+∞)上单调递增”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省嘉兴市高二(下)期末数学试卷(理科)(解析版) 题型:选择题

“a>0”是“函数f(x)=ax3-x2+x+1在R上为增函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案