精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2x3+3x2+1(x∈R).
(1)求函数f(x)的图象在点A(1,6)处的切线方程;
(2)求f(x)的单调区间.

分析 (1)求得函数的导数,确定切线的斜率和切点坐标,运用点斜式方程即可得到切线方程;
(2)求得导数,令导数大于0,可得增区间,令导数小于0,可得减区间.

解答 解:(1)因为f'(x)=6x2+6x,…(2分)
所以f'(1)=12,…(4分)
函数f(x)的图象在点(1,6)处的切线方程为:y-6=12(x-1)…(5分)
即:y=12x-6…(6分)
(2)f'(x)=6x2+6x=6x(x+1)…(7分)
令f′(x)>0,则x>0或x<-1…(9分)令f′(x)<0,则-1<x<0…(11分)
∴f(x)的增区间为(0,+∞),(-∞,-1)减区间为(-1,0)…(12分)

点评 本题考查导数的运用:求切线方程和单调区间,正确求导和运用对数函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.圆:x2+y2-4x+6y=0的圆心坐标和半径分别为(  )
A.(-2,3),13B.(-2,3),$\sqrt{13}$C.(2,-3),$\sqrt{13}$D.(2,-3),13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{x+4,}&{x≤-1}\\{2x,}&{x≥2}\end{array}\right.$,则f[f(-2)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.6,则P(0<ξ<1)=0.1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈(-1,1]时,f(x)=x,则函数$y=f(x)-{log_{\frac{1}{3}}}$|x|的零点个数是(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果cosα=$\frac{4}{5}$,那么$sin(α+\frac{π}{4})-\frac{{\sqrt{2}}}{2}$cosα等于(  )
A.$\frac{{2\sqrt{2}}}{5}$B.±$\frac{{2\sqrt{2}}}{5}$C.$\frac{{3\sqrt{2}}}{10}$D.±$\frac{{3\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,∠ACB=90°,且AC=BC=3,点M满足$\overrightarrow{BM}=2\overrightarrow{MA}$,
(1)用$\overrightarrow{CA}$、$\overrightarrow{CB}$向量表示向量$\overrightarrow{CM}$.
(2)求|$\overrightarrow{CM}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知cosx=$\frac{1}{3}$,则cos2x=(  )
A.$\frac{2}{3}$B.-$\frac{8}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.${(\root{3}{x}+\frac{1}{x})^n}$的展开式中第5项是常数项,那么这个展开式中系数最大的项为(  )
A.第9项B.第8项C.第9项和第10项D.第8项和第9项

查看答案和解析>>

同步练习册答案