精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinx, ), =(cosx,﹣1).
(1)当 时,求tan(x﹣ )的值;
(2)设函数f(x)=2( + ,当x∈[0, ]时,求f(x)的值域.

【答案】
(1)解: 即有 cosx+sinx=0,即tanx=﹣

tan(x﹣ )= = =﹣7


(2)解:f(x)=2( + =2cosx(sinx+cosx)+

=sin2x+cos2x+ = sin(2x+ )+

当x∈[0, ]时,2x+ ∈[ ],

f(x)≤ +

则f(x)的值域为[ + ]


【解析】(1)运用向量的关系的坐标表示和同角的商数关系及两角差的正切公式,计算即可得到;(2)运用向量的数量积的坐标表示和二倍角公式及两角和的正弦公式,化简f(x),再由正弦函数的图象和性质,即可得到f(x)的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610196200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 .

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面是边长为的菱形, ,四边形是矩形,平面平面 的中点.

(1)求证: 平面

(2)求直线与平面所成角的正弦值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校有线网络同时提供AB两套校本选修课程。A套选修课播40分钟,课后研讨20分钟,可获得学分5B套选修课播32分钟,课后研讨40分钟,可获学分4分。全学期20周,网络每周开播两次,每次均为独立内容。学校规定学生每学期收看选修课不超过1400分钟,研讨时间不得少于1000分钟。两套选修课怎样合理选择,才能获得最好学分成绩

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米.

(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;
(2)当x,y为何值时?线段|PQ|最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣ae2x(a∈R)
(I)当a≥ 时,求证:f(x)≤0.
(II)若函数f(x)有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若函数的图象在点处的切线的倾斜角为45°,对于任意的,函数在区间上总不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是(﹣1,1)上的偶函数,且在区间(﹣1,0)上是单调递增的,A,B,C是锐角三角形△ABC的三个内角,则下列不等式中一定成立的是(
A.f(sinA)>f(sinB)
B.f(sinA)>f(cosB)
C.f(cosC)>f(sinB)
D.f(sinC)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,则该三棱锥的外接球的表面积为  

A. B. C. D.

查看答案和解析>>

同步练习册答案