精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点的直线与抛物线交于两点,若中点的纵坐标为3

(Ⅰ)求的值;

(Ⅱ)过点的直线交抛物线于不同两点,分别过点、点分别作抛物线的切线,所得的两条切线相交于点.求的面积的最小值及此时的直线的方程.

【答案】(Ⅰ)(Ⅱ)最小值,此时直线方程为

【解析】

(Ⅰ)设,将直线方程代入抛物线的方程,结合韦达定理及过焦点的弦长公式;

(Ⅱ)设,利用导数可得的方程,联立方程即可求出点的坐标,利用弦长公式,可得,运用点到直线的距离公式可得点到直线的距离,进而得到的面积的表达式,根据函数的性质即可求出其最小值以及直线方程.

(Ⅰ)设

则抛物线方程为,抛物线焦点为

依题意,直线与抛物线交于两点,

故其斜率存在,设

恒成立,

(Ⅱ)设

直线的方程为

,①

同理直线的方程为,②

设过点的直线方程为

由①-②得

,故有

由①+②得

即点

到直线的距离

,即时,有最小值

此时直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x|+|x1|

1)若fx≥|m1|恒成立,求实数m的最大值M

2)在(1)成立的条件下,正实数ab满足a2+b2M,证明:a+b≥2ab

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

1)求证:

2)若点 上一点,且,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知过点且斜率为1的直线与曲线是参数)交于两点,与直线交于点.

1)求曲线的普通方程与直线的直角坐标方程;

2)若的中点为,比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最小值

(Ⅲ)若, 求使方程有唯一解的的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的右焦点为,过点且垂直于轴的弦长为3,直线与圆相切,且与椭圆交于两点,为椭圆的右顶点.

)求椭圆的方程;

)用分别表示的面积,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,是自然对数的底数.

1)若曲线在点处的切线为,求的值;

2)求函数的极大值;

3)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次知识竞赛规则如下:在主办方预设的7个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.7,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率等于(

A.0.07497B.0.92503C.0.1323D.0.6174

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案