精英家教网 > 高中数学 > 题目详情
a,b为不垂直的异面直线,α是一个平面,则abα上的射影有可能是______________.
①两条平行直线;
②两条互相垂直的直线;
③同一条直线;
④一条直线及其外一点.
在上面结论中,正确的编号是_________.(写出所有正确结论的编号)
①②④
本小题主要考查空间两条直线的位置关系,以及直线在平面上的射影等基本知识.只有③不正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,,直线分别交于点
,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为不共面直线,两点在上,两点在上,
,如图所示.求证:直线直线
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分别是AB、PC的中点.求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面内两直线有三种位置关系:相交,平行与重合。已知两个相交平面与两直线,又知内的射影为,在内的射影为。试写出满足的条件,使之一定能成为是异面直线的充分条件                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,△PAC与△ABC是均以AC为斜边的等腰直角三角形,AC=4,E,F,O分别为PA,PB,AC的中点,G为OC的中点,且PO⊥平面ABC.
(1)证明:FE平面BOG;
(2)求二面角EO-B-FG的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确的是(  )
A.平面αβ,直线mα,则mβ
B.l⊥平面α,平面β∥直线l,则αβ
C.直线l是平面α的一条斜线,且,则αβ必不垂直
D.一个平面内的两条直线与另一平面内的两条直线分别平行,则这两个平面平行

查看答案和解析>>

同步练习册答案